# MINISTERIO DE INDUSTRIA Y ENERGIA Instituto geologico y minero de España

ESTUDIO CALIDAD QUIMICA DE LAS AGUAS SUBTERRANEAS EN LA ISLA DE MALLORCA.

NOVIEMBRE 1980.

MEMORIA Y ANEXOS.

Ref. 3-Vb-80



### INDICE DE MATERIAS

|      |       |                                                                             | Pag |
|------|-------|-----------------------------------------------------------------------------|-----|
| I.   | ISLA  | DE MALLORCA                                                                 | 1   |
|      | I.1.  | SISTEMAS Y SUBSISTEMAS ACUIFEROS.                                           | 4   |
|      |       | I.1.1. SIERRA NORTE.                                                        | 4   |
|      |       | I.1.2. DEPRESION CENTRAL.                                                   | 5   |
|      |       | I.1.3. SIERRA DE LEVANTE.                                                   | 6   |
|      | I.2.  | REDES DE CONTROL DE LA CALIDAD DEL AGUA SUBTERRANEA.                        | 7   |
|      |       | I.2.1. REDES GENERALES.                                                     | 8   |
|      |       | I.2.2. REDES DE CLORUROS.                                                   | 9   |
|      |       | I.2.3. REDES ESPECIFICAS.                                                   | 9   |
|      | I.3.  | VULNERABILIDAD DE LOS ACUIFEROS A LA ALTERACION DE LA CALIDAD DE SUS AGUAS. | 13  |
| II.  | FOCOS | DE ORIGEN URBANO POTENCIALMENTE ALTERANTES DE LA CALI-                      |     |
|      |       | DEL AGUA SUBTERRANEA                                                        | 18  |
|      | II.1. | VERTIDOS RESIDUOS SOLIDOS URBANOS.                                          | 18  |
|      | II.2. | VERTIDOS AGUAS RESIDUALES URBANAS.                                          | 20  |
|      | II.3. | INCIDENCIAS POTENCIALES SOBRE LA CALIDAD DEL AGUA                           |     |
|      |       | SUBTERRANEA.                                                                | 22  |
| III. | FOCOS | DE ORIGEN AGRICOLA POTENCIALMENTE ALTERANTES DE LA                          |     |
|      |       | DAD DEL AGUA SUBTERRANEA                                                    | 29  |

|     |         |                                                       | Pag |
|-----|---------|-------------------------------------------------------|-----|
|     | III.1.  | SUPERFICIES DE REGADIO.                               | 29  |
|     | III.2.  | GANADO VACUNO.                                        | 30  |
|     | III.3.  | ABONOS QUIMICOS.                                      | 30  |
|     | III.4.  | INCIDENCIAS POTENCIALES SOBRE LA CALIDAD DEL AGUA     |     |
|     |         | SUBTERRANEA.                                          | 31  |
| IV. | ALTERAC | CION DE LA CALIDAD DEL AGUA SUBTERRANEA POR INTRUSION |     |
|     | MARINA  |                                                       | 32  |
|     |         |                                                       |     |
| V.  | RESUMEN | GENERAL                                               | 34  |
|     |         |                                                       |     |
| VI. | CONCLUS | IONES GENERALES                                       | 37  |

### ANEXOS

- I) CONSUMOS PROVINCIALES DE ABONOS QUÍMICOS. AÑOS 1977, 1978 y 1979 (Delegación Provincial Ministerio de Agricultura).
- II) <u>SUPERFICIES DE REGADIO. AÑO 1978.</u>

  (Delegación Provincial Ministerio de Agricultura).
- ABASTECIMIENTOS DE AGUA POTABLE Y EVACUACION DE AGUAS RESIDUALES.

  AÑO 1976.

  (Delegación Provincial del Ministerio de Sanidad y Seguridad Social).
- IV) Análisis de cloruros
- V) Análisis completos.
- VI) Análisis completos zona de Son Reus.

#### I. ISLA DE MALLORCA

La isla de Mallorca, con una extensión de 3640  ${\rm Km}^2$ . es la mayor del Archipielago Balear, alcanzando su costa una longitud de unos 450 km.

En la actualidad existen en la isla unas 14.500 captaciones de agua subterránea y se realizan peticio—nes anuales de otras 700 perforaciones, si se tiene en cuenta que el 90% de ellas se concentran en unos 2.700 Km², principalmente de la Depresión Central y Sierra — de Levante, se obtiene una estimación de la gran densidad de sondeos y pozos existentes en Mallorca.

Esta proliferación de captaciones de agua subterrânea responde a la necesidad de hacer frente al incremento experimentado en las demandas turísticas y agrícolas de la isla, a partir de 1960, en que concurren un alza espectacular en el número de estancias tu

rísticas con una potenciación en los sistemas de extracción de agua por incorporación de los grupos eléctricos sumergidos.

Como consecuencia del aumento de extracciones, se produjo la salinización de zonas singulares, como - Pont D'Inca y La Vall-Vert, disminuyendo por esta ra-zón los recursos hídricos totales de la isla.

Si se tiene presente, de una parte, la disminución de recursos hídricos por deterioro de su calidad por mezcla con agua de mar y de otra que las demandas de agua se incrementan principalmente en la medida que aumentan las superficies agrícolas de regadío y la población turística, procesos todavía en vías de superior desarrollo, así como también la difícil viabilidad de efectuar trasvases de otras cuencas por su condición de insularidad, se llega a la conclusión de que es totalmente necesario realizar un inventario de los focos potencialmente alterantes de la calidad del agua subte rrânea en Mallorca, a efectos de poder preservar los acuíferos excedentarios y con agua de buena calidad pa ra garantizar los abastecimientos a bs núcleos urbanos y de usar aquellos con agua de calidad adecuada para los cultivos en el regadío de las superficies agrícolas aprovechando la circunstancia de que los principales parámetros químicos que hacen impotable el agua para su consumo humano son precisamente los requeridos por algunos cultivos para optimizar su producción.

En base a este inventario, y no perdiendo de vista la panorámica hidrogeológica de la isla, se pretende

en definitiva esquematizar una planificación de los recursos subterráneos de la isla de Mallorca que permita una gestión del agua adecuada al uso requerido, en cada caso, sin olvidar que este esquema de planificación hídrico supondrá en diversos casos la creación de una infraestructura para los vertidos y tratamiento de aguas residuales urbanas, que requerirá los adecuados estudios de viabilidades técnicas y económicas.

#### I.1. SISTEMAS Y SUBSISTEMAS ACUIFEROS

Debido a las marcadas diferencias hidrogeológicas de los materiales litológicos de la isla de Mallor ca que constituyen acuíferos, se ha dividido a ésta en tres grandes sistemas acuíferos, que a continuación se describen esquemáticamente.

Puede verse su distribución y límites en el pla no nº 1.

### I.1.1. Sierra Norte

Constituye el sector más noroccidental de la isla, con una extensión de unos 900 km². bordeando el litoral septentrional de la isla.

Es una zona muy contraida y plegada por - las fuerzas tangenciales de la orogenia alpina, post-burdigaliense, lo que la configura un esti lo tectónico de tres grandes series cabalgantes unas sobre otras según una dirección NE.-SO.

Esta complejidad geológica unida a una - topografía muy abrupta, limita la realización - de sondeos de investigación, tanto por la dificultad en el movimiento de las máquinas de son-

deo, como por el gran coste de ellos, debido a la profundidad de los niveles acuíferos. For los mismos argumentos anteriores tampoco se posee una nivelación topográfica de los sondeos de investigación realizados, lo que impide dibujar mapas de isopiezas de la Sierra Norte, que permitirían un mayor conocimiento hidrogeo lógico de la zona.

Debido a la permeabilidad de los materia les aflorantes y a la alta pluviometría de la -zona, la Sierra Norte constituye potencialmente el principal sistema acuífero de la isla.

Dentro de este sistema se encuentran en fase de investigación para su posterior regulación las unidades de Ufanes-Gabelli y La Alma-draba-Mortitx, con unos recursos estimados de -40-45 Hm<sup>3</sup>. y que actualmente se pierden totalmente al mar.

## I.1.2. Depresión Central

La Depresión Central cubre una superficie aproximada de 2.200 km2. de la isla de Mallorca, litologicamente está constituida por limos, gravas y calcarenitas cuaternarios miocenos, su topografía es muy suave, superando ocasionalmente la cota 500 m. en las Sierras Centrales.

Debido a estas características topográficas, es en este Sistema donde la agricultura ha experimentado su mayor desarrollo, y es también donde se producen las mayores concentraciones — de población fija. Consiguientemente en esta — zona de la isla es donde se producen las mayo— res demandas de agua para cubrir las necesida— des humanas y agrícolas y consecuentemente donde se efectuan los mayores bombeos encaminados a satisfacer estas demandas.

La Depresión Central cubre la zona central de Mallorca, flanqueada por la Sierra de Levante.

Su situación y límites, así como los de las cinco subunidades acuíferas que se han distinguido en este Sistema pueden verse en el pla no nº 1.

## I.1.3. Sierra de Levante

La Sierra de Levante constituye un Siste ma acuífero definido por una serie de unidades calizo-dolomíticas infraliásicas y una franja - costera formada por materiales calizos y calcareníticos de edad miocena; afloramientos miocenos, oligocenos y cretácicos independizan estas unidades dando lugar a gran número de acuíferos desconectados entre si.

#### I.2. REDES DE CONTROL DE LA CALIDAD DEL AGUA SUBTERRANEA

El Instituto Geológico y Minero de España (I.G.M. E.), tiene encomendada entre sus fines y funciones la investigación y evaluación de los recursos hidráulicos subterráneos del pais, con el objetivo final de poder desarrollar una adecuada gestión cuantitativa y cualitativa de los mismos.

Una vez concluida la investigación hidrogeológica básica de la provincia de Baleares, consecuencia de la - cual fue la promulgación del Decreto 3382/73 de 21 de Diciembre, el I.G.M.E. lleva a cabo una serie de actividades que le han sido encomendadas por medio del citado Decreto, entre las que se encuentran las funciones técnicas necesarias que permitan la normal conservación de — los acuíferos.

Para cumplimentar lo encomendado por Decreto, el I.G.M.E. ha diseñado unas redes de control de la calidad química del agua subterránea, realizando periódicamente análisis de las muestras obtenidas en las captaciones — que forman dichas redes, para con estos datos y complementados con un inventario de los focos potencialmente — alterantes de la calidad química, intentar obtener una — correlación causa—efecto que permita reubicar los luga—res de vertidos alterantes o bien condicionar el uso del agua del acuífero receptor a actividades limitadas y compatibles con su calidad.

#### I.2.1. Redes Generales

Unas 80 captaciones distribuidas principalmente en las superficies de la Depresión Central y Sierra de Levante constituyen las redes generales de la calidad química del agua subterranea de la isla de Mallorca.

Mediante análisis químicos, donde se incluye la determinación de parámetros específicos detectores de vertidos incontrolados de aguas residuales, como son los elementos nitrogenados, materia orgánica, potasio y fosfatos, se obtiene una visión general de la calidad del agua en los acuíferos regulados de Mallorca, así como su evolución en el tiempo.

Cuando alguno o varios de los parametros químicos citados presentan repetidamente valores anormalmente altos o una evolución positiva, se procede a efectuar una campaña de reconocimiento de campo encaminada a ubicar el foco o zonas alterantes de la calidad, diseñando si es proceden te una red específica en torno al foco detectado para estudiar el movimiento del agua subterránea alterada y emitir el correspondiente informe téc nico avisando de las posibles repercusiones sobre las captaciones de abastecimiento próximas al lugar de vertido.

La distribución y situación de las captaciones de las redes generales se puede ver en el plano  $n \, 2 \, 10$ .

### I.2.2. Redes de cloruros

se cuantifican en unas 250 captaciones de agua subterrânea en la isla de Mallorca. En el año en curso se han extendido estas redes a Me—norca e Ibiza con un total de 130 captaciones para el conjunto de las dos islas.

En principio se determina únicamente el ión cloruro para estudiar las zonas de intrusión
de agua de mar y su evolución en el espacio y en
el tiempo. Ocasionalmente se determina algún -otro parametro, como pueden ser fosfatos o nitra
tos, cuando existe o se sospecha la existencia -de otra fuente de alteración que interaccione -con la intrusión de agua marina.

En función de los objetivos que se persiguen con estas redes, las captaciones que las -constituyen se sitúan a lo largo y en las proximidades de la costa, tal y como puede verse en el plano n.º 1.

## I.2.3. Redes Especificas

Se diseñan y desarrollan para cubrir --

áreas donde se practican vertidos controlados y con entidad suficiente como para poner en peligro la calidad requerida del agua, según sus — usos, en las captaciones próximas a los lugares de vertido.

Se acompañan siempre de una red piezométrica constituida por las mismas captaciones — que forman la red específica, para poder establecer relaciones entre la dirección del flujo del agua subtetránea y la evolución de su calidad, teniendo presente la ubicación del foco de vertido.

Existen tres redes de este tipo en la i $\underline{\underline{s}}$  la de Mallorca:

#### Red Específica de Felanitx

Se controla con ella el vertido superficial de las aguas residuales urbanas sin tratar de esta localidad. Está constituida por diez captaciones. El análisis químico completo comprende la determinación de elementos nitrogenados, fosfatos, potasio y oxígeno absorbido del permanganato. El elemento comparativo es el análisis del agua residual.

### Red Específica de Alaró

Se estudia con esta red, la posible incidencia del vertido superficial de las — aguas residuales urbanas sin tratar de — Alaró, en las aguas subterráneas evacua— das del coto minero de esta localidad, — con vistas a un futuro aprovechamiento de estos recursos hídricos en abastecimien— tos urbanos.

Los parámetros analizados son los mismos del caso anterior, pero con la inclusión de la determinación de detergentes no iónicos a título experimental como elemento trazador de las aguas residuales urbanas. Se utiliza como parámetro comparativo el análisis químico de las aguas residuales.

### Red Específica de Sant Jordi

Está formada por dieciocho captaciones — distribuidas en las cercanías de la planta depuradora de Sant Jordi, donde reciben un tratamiento secundario parte de las — aguas residuales urbanas de la zona coste ra de Palma.

El agua tratada es actualmente utilizada en casi su totalidad para el regadío de una zona limítrofe a la estación depurado ra, evacuándose el resto a través de siete sondeos de inyección.

En este caso y desde el punto de vista de calidad química del agua, se obtiene una alteración positiva, puesto que se rebaja el contenido en cloruros y se aumenta el de elementos nitrogenados, fosfatos y potasio, lo que se traduce en un mayor desa rrollo de los cultivos con un ahorro de fertilizantes químicos.

Se estudia con esta red, el movimiento del agua inyectada mediante el análisis piezométrico y l a evolución en la calidad química del agua del acuífero mediante análisis cuantitativos de muestras obtenidas en las captaciones que forman la red.

El análisis comparativo es el del agua residual después de tratada.

# I.3. VULNERABILIDAD DE LOS ACUIFEROS A LA ALTERACION DE LA CALIDAD DE SUS AGUAS.

Para el estudio de la vulnerabilidad de los acuíferos de la isla de Mallorca a la alteración de la calidad de sus aguas, se ha distribuido la superficie de la isla en tres zo nas, como puede verse en el plano nº 2, atendiendo a los siquientes criterios:

# - ZONAS DE MAXIMA POSIBILIDAD DE ALTERACION DE LA CALIDAD DE LAS AGUAS SUBTERRANEAS.

A su vez se distinguen en esta sección dos tipos de acufferos:

## a) Acuiferos fracturados puros o porosos-fracturados.

Cuando los materiales aflorantes son los mismos que constituyen el acuifero, no existiendo ningún tramo impermeable entre la superficie del terreno y la superficie freatica del acuifero, el único factor atenuante de la alteración de la calidad del agua es el espesor no saturado situado sobre éste, que en el caso de encontrarse fracturado no ofrece ninguna garantía de depuración. Por consiguiente los acuiferos fracturados ofrecen un máximo de posibilidades de alteración de sus aguas ante los vertidos de aguas residuales, o lixiviados producidos en los vertederos de residuos sólidos.

En el supuesto de producirse el vertido a través de pozos o sondeos realizados al efecto, se elimina proporcionalmente a la profundidad de la captación el posible poder depurador del terreno no saturado, pudiendo incorporarse directamente los elementos alterantes al flujo de agua subterránea, cuando la captación penetra hasta alcanzar el nivel del agua del acuífero.

Los acuiferos de la isla de Mallorca que presentan és tas características de escasa o nula autodepuración son los constituidos por materiales calizos y dolomíticos de las Sie rras Norte y de Levante, así como los de la Depresión Central conformados por calizas y calcarenitas que presentan una porosidad intergranular y además suelen estar fracturados.

## b) Acuiferos cuaternarios granulares.

Se pueden distinguir dos tipos de zonas cuaternarias; aquellas que tienen un espesor considerable de elementos cuaternarios y por tanto potencialmente pueden constituir un — acuífero y aquellos en que el espesor no pasa de ser un simple recubrimiento, por lo que por si mismo el terreno cuater nario no constituye acuífero alguno.

En el caso de acuíferos cuaternarios, principalmente constituidos por limos y gravas, la permeabilidad del conjunto de estos materiales suele ser muy alta, por lo que es máxima la posibilidad de verse alterada la calidad de sus aguas, por efecto de los vertidos. También debe considerarse el poder depurador del espesor no saturado, que en este caso es superior al de los acuíferos fracturados, por encontrarse al gunos niveles de limos poco permeables, pero en los acuíferos

cuaternarios más importantes de Mallorca, Llano de Palma, Llano de Inca-La Puebla y Depresión de Campos, los niveles se sitúan por lo general por encima de los 50 m. de profundidad, por lo que tampoco es muy considerable el efecto amortiguador de los terrenos no saturados.

Precisamente por su condición de alta permeabilidad, — los acuíferos costeros suelen estar conectados con el mar, — por lo que cuando son sometidos a una sobreexpoltación de sus recursos hídricos tiene lugar una intrusión de agua de mar, lo que produce una calidad en el agua subterránea que condiciona su utilización a usos restringidos, y en algún caso lle ga a imposibilitar totalmente su utilización.

En estos casos últimos la alteración química que se - produce por vertidos de aguas residuales es positiva puesto que hace disminur en el agua-mezcla la tasa de cloruros y aumentar los de potasio, fosfatos y elementos nitrogenados, -- con lo que se puede llegar a obtener teóricamente un agua de calidad adecuada para algunos usos agrícolas.

Las zonas en que el contenido en ión cloruro es superior a 1 g/l. por lo que es claro el proceso de intrusión de agua de mar pueden verse en el plano nº 1.

Aún teniendo en cuenta el efecto positivo que puede - obtenerse con vertidos en acuíferos con agua de calidad inutilizable, siempre debe diseñarse una red de control piezométrica que permita asegurar la dirección del agua residual inyectada y una red de control de la calidad química que confirme los resultados piezométricos.

casa potencia, y los materiales subyacentes son poco permeables, existen, en función del volumen vertido, escasas posibilidades de alteración de la calidad del agua subterránea, puesto que al existir un cambio brusco de permeabilidad, lo que se produce es una expansión horizontal a través del recubrimiento del agua residual vertida preferentemente a una percolación vertical.

por consiguiente en las áreas cubiertas por materia—
les cuaternarios de poco espesor, la mayor permeabilidad de
éstos materiales comparada con la de los subyacentes, produce un efecto amortiguador en la alteración de la calidad del
agua subterránea.

Si debajo del recubrimiento cuaternario, existen materiales de parecida permeabilidad, no se produce este efecto atenuante, y el agua subterrânea presenta un máximo de posibilidades de alteración de su calidad.

# - ZONAS CON POSIBILIDADES DE ALTERAÇION DE LA CALIDAD DE LAS AGUAS SUBTERRANEAS.

son aquellas áreas cubiertas por materiales de escasa permeabilidad y que no suelen encontrarse fracturadas, tales como las calizas liásicas superiores de las Sierras de Levan te y Norte, o las areniscas y conglomerados oligocenos de la Depresión Central de la isla.

Sin embargo, no debe olvidarse que estos materiales

prácticamente impermeables en sus depósitos originales, pueden verse fracturados cuando se encuentran próximos a zonas
de empujes u otros accidentes geológicos, por lo que localmente pueden encontrarse zonas con alta permeabilidad secun
daria, lo que hace imprescindible un estudio detallado cuan
do se presenta la alternativa de efectuar un vertido sobre
un área con las características descritas.

# ZONAS DE MINIMA POSIBILIDAD DE ALTERACION DE LA CALIDAD DE LAS AGUAS SUBTERRANEAS.

Estas zonas están constituidas por áreas donde los materiales aflorantes son impermeables, con espesor considerable como para poder minimizar los efectos alterantes en elentorno del lugar del vertido.

Son principalmente las áreas cubiertas por margas bur digalienses de la Depresión Central y margas cretácicas de - las Sierras Norte y de Levante, así como algunos afloramientos aquitanienses de Calviá y la Sierra Norte en donde los - sondeos realizados han puesto de manifiesto la impermeabilidad en profundidad de estos materiales.

Conviene recordar que en estas zonas impermeables los vertidos discurren prácticamente en superficie, por lo que - es necesario realizar perfiles topográficos que permitan co- nocer el curso superficial de las aguas residuales y el área final de infiltración, que puede encontrarse en algunas de - las zonas de máxima posibilidad de alteración, descritas en los apartados anteriores.

# II. FOCOS DE ORIGEN URBANO POTENCIALMENTE ALTERANTES DE LA CALI-DAD DEL AGUA SUBTERRANEA.

Se han recogido en el plano nº 3 los principales focos de origen urbano potencialmente alterantes de la calidad
del agua subterranea en la isla de Mallorca, que son con muy
distinta incidencia, los vertederos de residuos sólidos urbanos y los vertidos de aguas residuales.

#### II.1. VERTIDOS DE RESIDUOS SOLIDOS URBANOS.

Puesto que de los 550.000 habitantes permanentes de la isla de Mallorca unos 300.000 están concentrados en Palma, resulta inmediato pensar que los máximos peligros de alteración de la calidad de las aguas subterráneas, derivados de este tipo de vertidos, se deben presentar en la zona donde se realiza el correspondiente a ésta ciudad.

En la actualidad en la finça de Son Reus, habilitada a este efecto, existen unas 600.000 Ths. de residuos sóli—dos urbanos. Los residuos sólidos se encuentran dispues—tos en zanjas abiertas al efecto y apilados en dos células, la primera descansa directamente sobre el fondo de la excavación y la segunda se encuentra seperada de la inferior por una capa de tierra arcillosa rojiza, una vez situada la segunda capa de residuos sólidos se recubre con el mismo material descrito anteriormente. El espesor medio de cada una de las células es de unos 3 m. y la profundidad excavada en las zanjas, aunque muy irregular, no suele superar los 2 m. por lo que la zona ya saturada de residuos adquiere una for

ma centicular, con una diferencia de nivel de unos 3 m. so bre la superficie inicial, lo que favorece la escorrentía de las aguas de lluvia en los límites del vertedero hacia las zonas externas a éste, aunque por esta misma razón, el recubrimiento se encuentra disminuido por la erosión pluvial.

Como acción alternativa, ya iniciada aunque a escala experimental, la incineración de los residuos sólidos, aunque sin llegar a anular completamente el peligro de alteración de las aguas subterráneas, supondrá una reducción de este peligro en la medida en que se sustituye el vertido controlado de unas 300 Tm./día de residuos frescos por unas 80 Tm./día de escorias poco activas.

El resto de los municipios, con volúmenes de vertidos muy inferiores al de Palma, utilizan por lo general el sistema de vertido único incontrolado, provocando la combustión de los residuos, o en el caso de alguna localidad con poca producción, dispersándolos superficialmente en varias fincas, utilizando las áreas no cultivadas de éstas, con la consiguiente creación casi contínua de nuevos puntos de vertidos.

En algún caso aislado, se procede después de saturado el vertedero, a la reconstrucción del paisaje, con creación de suelo agrícola, como en el caso de Inca. También de forma aislada, se utilizan los hornos de las antiguas ce
menteras para la combustión de las cenizas y la cementera como vertedero de las cenizas de la combustión, este sistema se lleva a cabo actualmente en Artá, a título experimental, y desde luego constituye un método que desde el punto
de vista de prevención de la alteración de la calidad del
agua subterrânea es muy positivo, puesto que las cementeras

explotan materiales margosos cretácicos muy impermeables. Por las razones expuestas, de gran dispersión de los residuos, excepto en el caso de Palma, y sobre todo por el sistema casi generalizado en la isla de provocar su combustión, las posibles alteraciones de la calidad del agua subterránea provocadas por los vertederos de residuos sólidos urbanos son muy inferiores a las que pueden producir los vertidos incontrolados de aguas residuales urbanas, tema que a continuación se trata.

#### II.2. VERTIDOS AGUAS RESIDUALES URBANAS.

Los principales vertidos de aguas residuales urbanas así como el tipo de tratamiento que reciben y el volumen es timado anual se han recogido en el plano  $n^{o}$  3.

Análogamente al caso de los vertidos de residuos sólidos y por las mismas razones ya expuestas, la mayor producción de aguas residuales urbanas se producen en la ciudad de Palma.

Del total de esta producción, unos 30 Hm<sup>3</sup>, de 3,5 a 4 Hm<sup>3</sup> se tratan anualmente en las depuradoras de Son Puig y de Sant Jordi, empleándose actualmente casi el total de la producción de Sant Jordi, de 3 a 3,5 Hm<sup>3</sup>. en el regadío de unas 600 Has. que constituyen la primera fase de regadío experimental con aguas residuales urbanas tratadas que lleva a cabo I.R.Y.D.A.

El resto de la producción de agua residual de Palma -

es evacuada directamente al mar a través de aliviaderos.

En cuanto a agua residual producida sigue en importancia la ciudad de Inca, con un volumen estimado superior a 1 Hm<sup>3</sup>, sin embargo por lo que se refiere a influencias - en alteración de la calidad del agua subterránea, puede si tuarse en primer lugar, por las razones que se exponen en el apartado siguiente.

Igualmente resulta importante la producción y evacua ción de aguas residuales de Felanitx, superior a 500.000 m3. desde el punto de vista de mantenimiento de la calidad de - acuíferos, cuya utilización aún no está definida en los distintos sectores demandantes de agua.

En este apartado debe resaltarse que aproximadamente un 65% de los municipios de Mallorca, carecen de red de alcantarillado, por lo que la evacuación de aguas residuales se practica a través de pozos negros, sin ningún tipo de de puración, excepto el que pueda proporcionar el espesor no saturado situado encima del nivel de agua.

# II.3. INCIDENCIAS POTENCIALES SOBRE LA CALIDAD DEL AGUA SUBTERRANEA.

por lo que respecta al apartado de vertederos de residuos sólidos urbanos, como ya se ha indicado, el de mayor entidad por el número de toneladas diarias vertidas, unas - 300, es el de Son Reus, que almacena de forma controlada -- los vertidos de la ciudad de Palma.

El lugar de ubicación del vertedero, se encuentra situado en la cabecera del Llano de Palma, en materiales cuaternarios constituidos por limos rojizos, gravas y conglome rados, según se ha podido ver en el sondeo SHB - 2463 situado aguas abajo de Son Reus a una distancia de unos 1800 m. de la finca.

Este vertedero por su ubicación, desde el punto de - vista de la permeabilidad tanto de los materiales aflorantes como de los vistos en profundidad por los sondeos mecânicos realizados, se sitúa dentro de las zonas definidas como de máxima posibilidad de alteración de la calidad de las aguas subterráneas, peligro que en este caso adquiere mayor relie ve por encontrarse a unos 5 km. aguas arriba de las capta—ciones de Pont D'Inca que contribuyen aproximadamente con un 30% a satisfacer las demandas de agua de Palma.

Sin embargo, aún habiéndose depositado ya una cifra próxima a las 600.000 Tns. en los análisis realizados en - tres captaciones situadas aguas abajo del vertedero y a distancias de 1.700, 1.800 y 2.500 m. de éste, no se presentan valores anormalmente altos ni anómalos en los parámetros — analizados, no obstante, no se considera definitivo este —

primer muestreo, que no es más que un primer paso en el programa de control de la calidad del agua subterránea, que -- lleva a cabo el Instituto Geológico y Minero de España.

Estos análisis realizados en Mayo de 1979, duplicada mente por el Gabinete Técnico de Agua y el Laboratorio del Ayuntamiento de Palma, se adjuntan en el anexo correspondiente.

Una vez centrada la atención en el hecho de que el vertido que se realiza en Son Reus, es superior al 75% del
que se produce en toda la isla, y que el vertedero se encuen
tra situado en un acuífero cuaternario granular permeable,
pero que sin embargo los análisis realizados en 1979 no detectan valores anormalmente altos en los parámetros analiza
dos, parece lógico pensar que el resto de los vertederos de
la isla, dadas las circunstancias de gran diseminación, mucho menor vertido, utilización de combustión provocada y -normalmente mayor protección de espesor de aireación, aún los que se encuentren situados en zonas clasificadas como de
máxima posibilidad de alteración, deben producir una escasa
incidencia en la calidad del agua subterránea, excepto en algún caso aislado y siempre con carácter puntual.

En lo que respecta al vertido de aguas residuales — con o sin tratamiento, las alteraciones observadas mediante estudio de los análisis realizados en la campaña del año — 1980 y en anteriores, son mucho más significativas que las debidas a los vertidos de residuos sólidos urbanos.

En el caso de las aguas residuales de Palma, tratadas en San Jordi, aunque actualmente sólo se inyecta del orden de un 5% de la producción total, de 3 a 3,5 Hm<sup>3</sup>/año, el efecto

mixto producido por un lado por la reducción de extracciones de agua subterránea, sustituida por agua residual tratada y de otro por la inyección de parte de esta misma agua, se refleja con claridad en los mapas de isonitratos, isocloruros e isofosfatos, que se han elaborado en base a los análisis químicos realizados en 1980.

En el mapa de isocloruros se observa un retroceso en la curva de 3.000 mg/l. en la zona de utilización de agua - residual, en el de isonitratos una zona con contenido en ni tratos superior a 90 mg/l. atribuible a la oxidación de los compuestos nitrogenados incluidos en la materia orgánica — del agua residual tratada, y en el de isofosfatos, dos zo—nas claras con contenidos en ión fosfato superior a 1 mg/l. una correspondiente al área de inyección y otra probablemen te debida a los dondeos de inyección del aeropuerto.

Conviene aclarar que en estos mapas los valores de - los parâmetros analizados que han permitido delimitar las - zonas comentadas, pueden responder a diversas actividades - que interfieren entre sí, como son concentraciones de gana- dos vacunos, pozos negros de alguna localidad próxima, y - abonado químico de la tierra, por lo que las zonas representarían valores de los iones debidos al conjunto de las actividades alterantes del agua subterránea.

En el caso de Sant Jordi, dada la calidad de base — del agua del aculfero, lo que limita su utilización a usos muy restringidos, las alteraciones químicas antes descritas tienen un carácter positivo, puesto que se disminuye en parte el contenido en cloruros y aumenta el contenido en elementos nitrogenados y fosfatados, con lo que aumentan y mejoran las posibilidades de utilización del agua subterránea

de este sector para ciertos usos agrícolas. Por otra parte, la red piezométrica diseñada y medida periódicamente por el Instituto Geológico y Minero de España, permite asegurar que el agua inyectada no puede incidir actualmente sobre la calidad del agua de las captaciones de abastecimiento más próximas, como se explica detenidamente en el informe correspondiente al Llano de Palma, Sector de Sant Jordi.

A tenor de las incidencias ya constatadas, se debe es perar, siempre y cuando se siga manteniendo la forma de la -actual superficie piezométrica, que la futura utilización de aguas residuales tratadas en el Sector de Sant Jordi, continue produciendo las alteraciones químicas en el agua del acuífero en el mismo sentido descrito anteriormente.

Muy distinto caso es el correspondiente al vertido de las aguas residuales tratadas de Inca, que recorren superficialmente unos 3 Km. para después infiltrarse e incorporarse al flujo subterrâneo siguiendo el esquema local para drenar después a través de la línea de fuentes de la Albufera.

La incidencia actual que se observa principalmente por efecto conjunto de los vertidos superficiales de las ciu
dades de Inca-Muro y los vertidos a través de pozos negros de Llubí es un aumento en el contenido de cloruros, pasando
de los valores normales en la zona, inferiores a 100 mg/l. a
valores superiores a 200 mg/l. tal y como puede apreciarse en el mapa de isocloruros del Llano Inca-La Puebla de Julio
de 1980. (Plano nº 9).

No se ha dispuesto de suficiente número de análisis — de otros parámetros que permitieran zonificar según estos parámetros el Dano Inca-La Puebla, tal y como se ha hecho en —

el caso de Sant Jordi, por lo que está previsto aumentar el número de muestras para análisis completos, dentro de la —Red General de Control de la Calidad Química, que actualmente mantiene el I.G.M.E.

El acuífero del Llano Inca-La Puebla es excedentario en un volumen anual de unos 15 a 20 Hm<sup>3</sup>, que actualmente se pierden en su totalidad al mar, por lo que no debe descar—tarse la idea de aprovechar éstos recursos sobrantes en satisfacer demandas de otras áreas deficitarias. Por esta condición de ser uno de los escasos acuíferos excedentarios de Mallorca, es por lo que parece más urgente la necesidad de — impedir que esta alteración de la calidad de sus aguas se — siga produciendo. En este caso la variación observada, — opuestamente al caso de Sant Jordi, es una alteración química negativa, puesto que se trata de un aumento del contenido en cloruros y en elementos nitrogenados y fosfatados, que desde una óptica de utilización distinta de la agrícola, la confiere propiedades indeseables.

Las incidencias futuras, prosiguiendo el mismo sistema de evacuación, se harán notar en el sentido de ampliar - la zona de afección, y aumentar el contenido en los parámetros químicos comentados en el área afectada actualmente.

Atendiendo al volumen anual, unos 650.000 m3, el vertido superficial de las aguas residuales sin tratar de la ciudad de Felanitx, adquieren también un importante relieve puesto que este volumen, del que se estima es utilizado en regadio en una cantidad inferior al 10%, tiene su zona de influencia en el acuifero helveciense de Felanitx-Porreres.

En este acuífero, actualmente con agua de buena calidad, se está realizando una campaña de geofísica por parte

del I.G.M.E. que pretende esclarecer la disposición estructural de las margas miocenas subyacentes a las calcarenitas helvecienses, puesto que según se ha manifestado en la piezometría local, existen diferencias de hasta 30 m. en los niveles piezométricos de sondeos separados entre sí distancias inferiores a 3 km. Amparando esta hipótesis de desconexión entre el acuífero salinizado de la depresión de Campos y el acuifero mioceno de Felanitx-Porreres, se han estu diado cortes litológicos de la zona de discontinuidad en --los que las margas se encuentran a muy escasa profundidad, pudiendo constituir la barrera impermeable que explicara -las bruscas variaciones de los niveles piezométricos. el supuesto de que la geofísica confirmara la existencia de éste umbral impermeable, el acuífero helveciense en la zona de Felanitx-Porreres, quedaría a cubierto de cualquier fenó meno de intrusión de agua de mar, lo que daría un gran po-der de maniobrabilidad para poder usar las reservas del acuí fero e incluso para poder utilizarlo como embalse subterráneo almacenando los recursos hídricos de otros acuíferos que ac tualmente se pierden al mar, casi en su totalidad.

Las redes piezométricas y de vigilancia de la calidad química del agua que actualmente mantiene el I.G.M.E. defiren el flujo del agua subterrânea y consiguientemente el de las aguas residuales infiltradas, que tiene el sentido de alejamiento de los sondeos de agua potable que actualmente abaste ce a la ciudad de Felanitx, por lo que no deben esperarse al teraciones en la calidad química de estas aguas, debidas al vertido superficial de las aguas residuales de Felanitx. En base a las posibilidades de aprovechamiento futuro del acuífero helveciense de Felanitx-Porreres es por lo que se realiza una llamada de atención sobre el vertido ya comentado.

Por lo que respecta a la segunda ciudad de Mallorca en número de habitantes, Manacor, no dispone aún de red de distribución de agua potable ni de depuradora, por lo que los vertidos se efectúan en parte a través de pozos negros y en parte a través de una red de alcantarillado que eva—cúa al torrente que pasa por las inmediaciones de la ciudad.

Si se tiene en cuenta el censo de Manacor, unos — 30.000 habitantes, cuando se ponga en funcionamiento la red de distribución de agua potable, el efluente depurado debe adquirir un volumen considerable. El trazado previsible — para este vertido es el curso del torrente de Na Borges que desemboca cerca de la Colonia de San Pedro, después de cruzar el acuífero de Sa Marineta por lo que quizá sería interesante realizar un estudio de viabilidad técnica y económica para reutilización de estas aguas depuradas en actividades agrícolas y su inyección en el área costera salinizada de Sa Marineta, en las épocas en que no existiera demanda — agrícola.

La incidencia sobre los acuíferos de los vertidos del resto de las poblaciones es muy inferior a las descritas, — aunque puntualmente pueden producir afecciones en los abaste cimientos de las mismas localidades, como pueden ser los casos de Búger, Llubí y algún otro, en que las captaciones de agua para uso urbano se encuentran dentro del núcleo de la — ciudad y la evacuación de aguas residuales se efectúa a través de pozos negros o por red con infiltración en las inme— diaciones del sondeo de abastecimiento.

## III. FOCOS DE ORIGEN AGRICOLA POTENCIALMENTE ALTERANTES DE LA CA-LIDAD DEL AGUA SUBTERRANEA.

Se incluyen en los anexos I y II, los listados correspondientes a los consumos provinciales de abonos químicos du rante los años 1977, 1978 y 1979, así como las superficies—de regadio censadas durante 1978. Todos estos datos han sido solicitados por la Delegación Provincial del Ministerio—de Agricultura y Jefatura Provincial del Instituto de Reforma y Desarrollo Agrario. Estos datos han sido elaborados y superpuestos al mapa de vulnerabilidad de los acuíferos a la alteración de la calidad de sus aguas, obteniendo de esta—forma el mapa nº 4 que recibe el mismo título que el de este capítulo.

### III.1. SUPERFICIES DE REGADIO

Del total de 18.900 Has. regadas en la isla de Mallo<u>r</u> ca, un 63% se concentran en los llanos de Palma, Campos y La Puebla.

En los dos primeros llanos, con profundidades de nivel de agua inferior generalmente a los 20 metros, el contenido en cloruros del agua utilizada en las demandas agrícolas, particularmente en los cultivos de alfalfa, es de unos 2.000-3.000 mg/l. con lo que queda claro que este tipo de cultivo se lleva a cabo en zonas de franca intrusión de agua de mar.

En el Llano de La Puebla, como ya se ha comentado an teriormente, el agua subterránea tiene un bajo contenido en cloruros y en general una buena calidad, por lo que predomi na el cultivo de la patata y de las hortalizas.

En el sistema acuifero de la Sierra de Levante, se - encuentran censadas otras 1.500 Has. y unas 1.300 en el sistema de la Sierra Norte. La disposición de las superficies de regadio se han recogido en el plano nº 4.

### III.2. GANADO VACUNO

Las zonas de gran concentración de ganado vacuno se sitúan en las áreas de intensa producción de alfalfa, que como ya se ha descrito en el apartado anterior, coinciden con los frentes de intrusión de agua de mar.

El reparto de ganado vacuno en la superficie de la isla de Mallorca, está representado en el plano nº 4.

## III.3. ABONOS QUIMICOS.

El mayor consumo de abonos químicos en la provincia de Baleares lo constituye el del sulfato amónico y superfos fato de cal, con un 65% sobre el consumo total, 49.336 Tm. en el año 1979.

Cerca de un 40% de todo el fertilizante nitrogenado de la provincia se consume en el Llano de La Puebla y el fosfórico se utiliza preferentemente en el cultivo de la alfalfa en los Llanos de Palma-Campos y en la isla de Menorca.

La distribución del consumo se recoge en el plano nº 4.

# III.4. INCIDENCIAS POTENCIALES SOBRE LA CALIDAD DEL AGUA SUBTERRANEA

Las incidencias producidas por las actividades agricolas y ganaderas que se desarrollan en los Llanos de Palma y
Campos adquieren un escaso relieve si se tiene en cuenta la
calidad de base del agua subterranea de los acuiferos donde
se llevan a cabo estas actividades. Otro caso muy distinto
es el del Llano de La Puebla, donde las actividades agricolas y ganaderas se efectúan sobre un acuifero excedentario
con agua de buena calidad, de todas formas y en términos ge
nerales los valores de los elementos nitrogenados registrados en los análisis químicos realizados no adquieren concen
traciones muy elevadas, y desde luego están muy por debajo
de los obtenidos en puntos claramente afectados por vertidos de aguas residuales.

En general y excepto algún caso puntual, se puede - concluir que las futuras incidencias alterantes de la calidad del agua subterránea, producidas por las actividades -- agricolas-ganaderas se pueden situar en un segundo plano -- respecto a las incidencias originadas por las evacuaciones de efluentes procedentes de núcleos urbanos.

# IV. ALTERACION DE LA CALIDAD DEL AGUA SUBTERRANEA POR INTRUSION MARINA.

Sin lugar a dudas la intrusión de agua de mar producida por la sobreexplotación de algunos acuíferos es la mayor causa determinante de la alteración de la calidad del agua subterránea y consiguientemente de la disminución de bes recursos hídricos de la isla de Mallorca.

En el plano nº 1 se han representado aquellas zonas en que el contenido en ión cloruro es superior a 1 g/l. y - por consiguiente es claro el proceso de intrusión de agua - de mar, excepto en el caso de la zona costera del acuífero de La Puebla, en que el elevado contenido en este parámetro es debido a ser una zona de antigua albufera, desconectada del acuífero del Llano que descarga por una línea de fuentes, anteriores a la zona de la albufera.

Por la importancia actual de ésta causa de alteración destacan los acuíferos de la depresión de Campos, con contenido en cloruros de unos 1.000 mg/l. a distancia de unos 10 km. de la línea de costa y el del Llano de Palma, en su zona oriental, donde el mismo valor de éste parâmetro se registra hasta unos 5 km. del mar.

por la incidencia futura que pudiera tener en el supuesto de una explotación intensiva, conviene mencionar el acuífero de La Marineta, donde actualmente los volúmenes anua les extraídos son del orden de 2 Hm3. y se registran valores de 1.000 mg/l. de cloruros a distancias cercanas a 2 km. de la línea de costa.

En el apartado conclusiones se esboza un esquema de - gestión y reutilización de aguas residuales tratadas, con el doble objetivo de impedir los deterioros que pueden causarse por sus vertidos incontrolados a la vez que se intenta obtener un reflejo positivo en las zonas afectadas por procesos de agua de mar.

#### V. RESUMEN GENERAL

En los apartados anteriores se ha pasado revista a las causas de alteración de la calidad química de las aguas derivadas de las actividades urbanas, agrícola—ganaderas y las debidas a los procesos de intrusión de agua de mar.

Como resumen de todo lo anterior, y en orden decre-ciente de importancia, en cuanto a las incidencias actuales
y futuras que se pueden esperar sobre la calidad actual de
las aguas subterrâneas, se expone lo siguiente.

#### - Causas de alteración con máxima incidencia.

Sin lugar a dudas la causa más importante en la actua lidad, desde la perspectiva de degradación del agua para cualquier uso, y consiguiente disminución de — los recursos hídricos de la isla de Mallorca, es el proceso de intrusión de agua de mar, manifiesto cla ramente en los llanos de Palma y Campos, en el mio— ceno de la Sierra de Levante y en el acuífero cali— zo costero de Sa Vall Vert, probablemente conectado con la unidad de Calviá.

Igualmente reviste la máxima importancia, la inci-piente salinización del acuífero de La Marineta, con
vistas a una futura explotación intensiva de éste -acuífero.

Dentro de este apartado de máxima incidencia, debe incluirse también el vertido de aguas residuales ---

tratadas de la ciudad de Inca, que ya empieza a producir una cierta alteración en la calidad del agua subterrânea en un área próxima a la zona de infil—tración, puesto que esta alteración tiene lugar en un acuifero en general con agua de buena calidad y sobre todo es excedentario en un volumen anual de 15 a 20 millones de m3. que actualmente se pierden en su totalidad al mar. (Planos nº 1 y nº 9).

# - Causas de alteración con escasa incidencia.

Se recogen en este apartado, las actividades agrícola-ganaderas que se efectúan en el Llano de Inca-La Puebla, por las incidencias potenciales que pudieran producir en el futuro y por la razón anteriormente expuesta de tratarse de un acuífero excedentario y de fácil regulación.

También se incluyen las posibles incidencias derivadas de los vertederos de residuos sólidos urbanos, con excepción del de la ciudad de Palma, que potencialmente podría producir alteraciones de cierta con sideración, aunque en los primeros análisis efectuados, no se haya apreciado valores altos ni anómalos de los parámetros analizados.

# Causas de alteración con minima incidencia

Se refiere este apartado a todas las actividades que

se realizan en aquéllas áreas donde la calidad del agua subterránea tiene un contenido en cloruros de 2.500 a 3.000 mg/l. y no existe posibilidad de producirse afecciones a captaciones de abastecimiento, según se ha podido comprobar del análisis detallado de las redes piezométricas y de calidad química de las aguas que mantiene el Instituto Geológico y Minero de España.

Por consiguiente, comprende los focos potenciales — de alteración derivados del sector agrícola-ganadero de la zona oriental del Llano de Palma y de la depresión de Campos, así como la eliminación de aguas residuales mediante inyección en la zona de Sant Jordi que incluso como ya se ha comentado en el apartado — correspondiente, producen una alteración química positiva en el agua de base del acuífero.

#### VI. CONCLUSIONES GENERALES

Lo que a continuación se expone, a título de conclusión general de los apartados anteriores, está siempre enfocado desde la única y exclusiva perspectiva de evitar en la medida de lo posible la degradación del agua subterrânea en aquellos acuíferos en que por sus condiciones — actuales excedentarias y de calidad, pueden potencialmente ser utilizados para resolver los problemas de abastecimiento actualmente planteados, a la vez que se pretende — ofrecer unas normas orientativas sobre los vertidos de — aguas residuales principal causa alterante de la calidad del agua subterrânea, con la finalidad de integrarlas en el conjunto global de los recursos hídricos totales de la isla de Mallorca, previo los correspondientes estudios de viabilidades técnica y económica.

# - Aguas residuales tratadas de PALMA

Con los volúmenes de aguas residuales actualmente — utilizadas en el sistema de regadio—inyección en el sector de Sant Jordi, del orden de 3 a 3,5 Hm³/año, la superficie piezométrica no ha experimentado modificación susceptible de ser apreciada mediante la — red de control piezométrico que actualmente mantie— ne el Instituto Geológico y Minero de España, análo— gamente del análisis de los datos obtenidos de la — red específica de calidad química, complementaria — de la anterior, se confirma la dirección y flujo del agua subterránea correspondiente a la piezometría — general de la zona oriental del Llano de Palma, ob—

servándose una disminución local del contenido en iones cloruros, y valores altos de nitratos aguas abajo del sector de utilización de las aguas residuales, atribuibles en principio a una oxidación del nitrógeno orgánico en el sentido del flujo subterráneo.

En las condiciones actuales del flujo de agua subterrânea, deducido del estudio de la superficie piezométrica, el agua inyectada directamente al acuifero o procedente de los excedentes de regadio, notiene posibilidades de alcanzar las captaciones de abastecimiento más cercanas, puesto que entre los niveles piezométricos medidos en los 17 puntos acuiferos que rodean el sector de actividades realizadas con aguas residuales y los correspondientes a las zonas donde se encuentran ubicadas las captaciones de abastecimiento, existen elevaciones de la superficie piezométrica que delimitan el camino que puede recorrer el agua residual, cuyo final es la zona de costa, donde la intrusión de agua de mar es mayor.

Consecuentemente con lo anterior, y a la vista de - que la alteración observada es positiva, contemplan do el uso a que va destinada el agua del acuifero, se recomienda intensificar el sistema de reutilización del agua residual tratada en el sector de Sant Jordi hasta el límite del potencial de producción - de las plantas depuradoras actualmente establecidas siempre y cuando no se observen modificaciones sustanciales en la actual forma de la superficie piezo métrica, para lo que resulta indispensable el mante

nimiento y seguimiento de las redes piezométricas y de calidad química actualmente establecidas por el I.G.M.E.

#### Aguas residuales tratadas de Inca.

En este caso el vertido y posterior infiltración de aguas residuales se practica en un aculiero con agua de buena calidad. La incipiente alteración observa da se traduce en un ligero aumento del contenido en ión cloruro, así como de la conductividad, en una zona próxima al área de infiltración de las aguas residuales. Puesto que el acuifero del Llano Inca-La Puebla es excedentario, y no existen, como en el caso de Sant Jordi, zonas sometidas a intrusión de agua de mar, no es recomendable la infiltración natural o provocada de los vertidos tratados y su uso en actividades agrícolas, en el supuesto de llevarse a efecto en la superficie del mismo acuifero, de bería ser muy restringido y limitado a aquellas zonas en que exista el máximo de cobertura de terreno no saturado.

Por consiguiente, parece lo más apropiado, siempre desde el punto de vista de conservación de la calidad del agua subterránea de los acuíferos excedentarios, hacer uso de otro acuífero como receptor de estas aguas.

Por motivos de proximidad, y de intrusión de agua - de mar sin haberse comenzado la explotación intensi

siva de sus recursos, este acuífero receptor, podría ser el de La Marineta, utilizando su área — costera de contenido en ión cloruro del orden de 1 g/l. para inyección, y la nueva infraestructura de regadío a crear como consumidora directa en la época del año en que esto es factible.

#### Aguas residuales tratadas de Manacor

Aunque actualmente aún no han entrado en funcionamiento las redes de abastecimiento y evacuación de aguas residuales, dada su condición demográfica de segunda ciudad de la isla, debe preverse una producción creciente importante de aguas residuales tratadas, cuyo destino último puede ser también el acuífero de La Marineta en su zona salinizada, y su consumo agrícola el de esta misma superficie o los afloramientos impermeables del norte de Manacor, si los informes técnicos competentes en materias agrícolas lo consideran factible.

### Aguas residuales de Felanitx

El vertido superficial de estas aguas sin tratamien to alguno, se efectúa en el acuífero mioceno de Felanitx-Porreres, en el que actualmente se lleva a cabo por el I.G.M.E. una campaña de geofísica apoya da en sondeos mecánicos de investigación, que tiene como finalidad el estudio de la conexión entre el -

acuífero salinizado de Campos y el receptor de aguas residuales, que actualmente aún tiene agua de calidad química aceptable para cualquier uso.

En el supuesto de que el estudio en marcha demostra ra de forma clara la existencia de un umbral impermeable que desconectara totalmente los dos acuíferos, el de Felanitx-Porreres constituiría un embalse subterrâneo sin posibilidad de salinizarse, por lo que se podría disponer de unas reservas utilizables para el abastecimiento urbano de la localidad de Campos y para el mantenimiento de las superficies loca les de regadío. En este supuesto el vertido de agua residual de Felanitx debería ser reubicado, inyectán dose en el acuífero salinizado de Campos y utilizándose, si ello es factible, conjuntamente con las aguas residuales tratadas de Campos, cuando haya lugar, en mantener y mejorar la existente infraestructura de regadío de la depresión de Campos.

Para evitar una progresiva disminución de las reservas de agua subterránea del acuífero mioceno, se podría inyectar en este acuífero, parte de los recursos de La Marineta que actualmente se pierden al mar principalmente en invierno, y que dada la alta transmisividad del acuífero y escasa altura de su superficie piezométrica, provocaría una mayor intrusión de agua de mar si se explotara en la misma zona de La Marineta, en la época en que potencialmente existiría demanda, que es la época de más bajos niveles piezométricos.

Si se producen las viabilidades técnicas y económicosociales, que permitan ejecutar este trasvase de agua subterrânea del acuifero de La Marineta, al de Fela nitx-Porreres, los bombeos deben proyectarse desde la zona más alejada del mar, por razones de menor distancia al acuifero receptor, de mejor calidad ac tual del agua y sobre rodo para asegurar la no interacción con las aguas residuales que pudieran in yectarse en la zona costera, y desde luego los bom beos deben ser programados únicamente en invierno.

Todas estas acciones propuestas de recargas artificiales, encaminadas unas a dificultar la progresiva salinización de algunos acuíferos, y otras a reponer artificialmente las reservas hídricas subterráneas de unos acuíferos con los recursos que escapan al mar de otros, deben ir — siempre precedidos del diseño e instalación y posterior — mantenimiento de redes de control piezométrico y de calidad química, que permitan asegurar que se cumplen los fines propuestos.

Palma de Mallorca, Diciembre, 1980

ΛōΒō

Alejandro ROSO SANCHEZ

Ingeniero I.G.M.E.

# ANEXO I

CONSUMOS PROVINCIALES DE ABONOS QUIMICOS.

AÑOS 1977, 1978 y 1979.

(Delegación Provincial Ministerio de Agricultura).

# CONSUMOS PROVINCIALES DE ABONOS QUIMICOS

### AÑO 1.977

| Sulfato amónico 21%         | 22.762 | Tm. |
|-----------------------------|--------|-----|
| Nitrosulfato amónico 26%    | 836    | 11  |
| Nitrato amónico cálcico 26% | 1.828  | 11  |
| Nitrato amónico 33,5%       | 1.284  | 17  |
| Urea granulada 46%          | 1.085  | **  |
| Superfosfato de cal 18%     | 21.107 | 11  |
| Sulfato potásico 48%        | 1.700  | 11  |
| Complejos diversos          | 8.928  | 11  |
| TOTAL                       | 59.530 | Tm. |

#### FUENTE DE LOS DATOS:

DELEGACION PROVINCIAL DEL MINISTERIO DE AGRICULTURA EN BALEARES.

# CONSUMOS PROVINCIALES DE ABONOS QUIMICOS

### AÑO 1.978

| Sulfato amónico 21%            | 17.600 | Tm. |
|--------------------------------|--------|-----|
| Nitrosulfato amónico 26%       | 141    | 11  |
| Nitrato amónico cálcico        | 1.957  | 11  |
| Nitrato amônico cálcico 30,5 % | 1.821  | 11  |
| Nitrato amónico 33,5%          | 2.166  | **  |
| Urea granulada 46%             | 1.811  | 11  |
| Superfosfato de cal 18%        | 18.000 | **  |
| Sulfato potásico 48%           | 1.400  | **  |
| Compuesto diversos             | 7.992  | Ħ   |
| TOTAL                          | 52.888 | Tm. |

#### FUENTE DE LOS DATOS:

DELEGACION PROVINCIAL DEL MINISTERIO DE AGRICUL-TURA EN BALEARES.

# CONSUMOS PROVINCIALES DE ABONOS QUIMICOS

# AÑO 1979

| Sulfato amónico 20,8%       | 15.243 | $\operatorname{Tm}_{ullet}$ |
|-----------------------------|--------|-----------------------------|
| Nitrosulfato amónico 26%    | 490    | 11                          |
| Nitrato amónico cálcico 30% | 2.650  | 11                          |
| Nitrato amónico 33,5%       | 2.590  | 11                          |
| Nitrato de "Chile" 15%      | 60     | 11                          |
| Urea granulada 46%          | 1.950  | *1                          |
| Soluciones nitrogenadas 32% | 1      | 11                          |
| Superfosfato de cal 18%     | 15.763 | 11                          |
| Sulfato de potasa 48%       | 1.200  | Ħ                           |
| Compuestos                  | 9.389  | 11                          |
| TOTAL                       | 49,336 | Tm.                         |

#### FUENTE DE LOS DATOS:

DELEGACION PROVINCIAL DEL MINISTERIO DE AGRICUL
TURA DE BALEARES.

### ANEXO II

SUPERFICIES DE REGADIO. AÑO 1978. (Delgación Provincial Ministerio de Agricultura).

# SUPERFICIES DE REGADIO - AÑO 1.978

Fuente de los datos: DELEGACION PROVINCIAL DEL MINISTERIO DE AGRICULTURA EN BALEARES.

| <u>Têrmino</u><br>Municipal | Иδ   | Has. |
|-----------------------------|------|------|
|                             |      |      |
| Algaida                     | •    | 34   |
| Andraitx                    | •    | 92   |
| Banyalbufar                 | •    | 55   |
| Bunyola                     | •    | 63   |
| Calviâ                      | •    | 64   |
| Deyâ                        | •    | 41   |
| Esporlas                    | •    | 73 · |
| Estallenchs                 | •    | 37   |
| Fornalutx                   | •    | 49   |
| Lluchmayor                  | • 1  | 1 71 |
| Marratxi                    | . 8  | 364  |
| PALMA                       | .3.5 | 534  |
| Puigpunyent                 | •    | 57   |
| Santa Eugenia               | •    | 25   |
| Santa María                 | •    | 36   |
| Söller                      | • (  | 350  |
| Valldemosa                  | •    | 75   |
| TOTAL COMARCA NO 1          | 5 6  | 20   |

| <u>Término</u> <u>Municipal</u> | Nº Has.      |
|---------------------------------|--------------|
| Alaró                           | 23           |
| Alcudia                         | 200          |
| Binisalem                       | 221          |
| Buger                           | . 114        |
| Campanet                        | . 135        |
| Consell                         | • 28         |
| Costitx                         | . 15         |
| Escorca                         | • -          |
| INCA                            | 298          |
| Lloret de Vista Alegre          | • 6          |
| Lloseta                         | <b>6</b> 80  |
| Llubí                           | • 354        |
| Mancor del Valle                | • 20         |
| María de La Salud               | . 124        |
| Muro                            | . 1.325      |
| Pollensa                        | <b>.</b> 867 |
| La Puebla                       | . 1.971      |
| Sancellas                       | <b>.</b> 265 |
| Santa Margarita                 | 218          |
| Selva                           | • 47         |
| Sineu                           | • 81         |
| TOTAL COMARCA Nº 2              | 6.392        |

| <u>Término</u><br>Municipal | Nº Has. |
|-----------------------------|---------|
|                             |         |
| Artá                        | 246     |
| Campos                      | 2.803   |
| Capdepera                   | 509     |
| Felanitx                    | 396     |
| MANACOR                     | 929     |
| Montuiri                    | 135     |
| Petra                       | 396     |
| Porreras                    | 178     |
| San Juan                    | 60      |
| San Lorenzo                 | 92      |
| Santanyi                    | 470     |
| Ses Salines                 | 272     |
| Son Servera                 | 241     |
| Villafranca                 | 150     |
| TOTAL COMARCA Nº 3          | 6.877   |

| Término<br>Municipal | Nº Has. |
|----------------------|---------|
| Alayor               | •• 312  |
| Ciudadela            | 1.686   |
| Ferrerias            | 106     |
| MAHON                | 181     |
| Mercadal             | •• 97   |
| San Luis             | •• 98   |
| Villacarlos          | 56      |
| TOTAL COMARCA Nº 4   | 2•563   |
|                      |         |
| Formentera           | 1       |
| IBIZA                | 81      |
| San Antonio          | 306     |
| San José             | 115     |
| San Juan Bautista    | 315     |
| Santa Eulalia        | 994     |
| TOTAL COMARCA Nº 5   | 1.812   |
|                      |         |
| 1, 2 y 3 MALLORCA    | 18.889  |
| 4 MENORCA            | 2.536   |
| 5••••• IBIZA         | 1.812   |
| TOTAL PROVINCIAL     | 23.237  |

.

### ANEXO III

ABASTECIMIENTOS DE AGUA POTABLE Y EVACUACION

DE AGUAS RESIDUALES. AÑO 1976,

(Delegación Provincial del Ministerio de Sanidad y Seguridad Social).

HOJA Nº 1

# ABASTECIMIENTOS DE AGUA POTABLE Y EVACUACION DE AGUAS RESIDUALES

AÑO 1976

| Núcleo de Población          | Municipio   | Nº habit. | Red Agua                       | Depósito<br>cabecera | Aparato<br>dosificador<br>cloro | Capt <u>a</u><br>ciones | Camiones<br>cisterna | _                                         |    | Emisar<br>subman |
|------------------------------|-------------|-----------|--------------------------------|----------------------|---------------------------------|-------------------------|----------------------|-------------------------------------------|----|------------------|
| ALARO                        | ALARO       | 3.444     | NO                             | NO                   | NO                              | 1                       | 1                    | NO                                        | NO | NO               |
| ALCUDIA (casco)              | ALCUDIA     | 2.992     | NO                             | NO                   | NO                              | 14                      | 7 .                  | NO                                        | NO | NO               |
| ALCUDIA (puerto)             | ALCUDIA     | 1.577     | SI                             | SI                   | SI                              | _                       | _                    | SI                                        | NO | SI               |
| ALGAIDA                      | ALGAIDA     | 1.677     | parcial207                     | NO                   | SI                              | 3                       | 4                    | NO                                        | NO | NO               |
| PINA                         | ALGAIDA     | 373       | parcial207<br>habitantes<br>NO | NO                   | NO                              | _                       | _                    | NO                                        | NO | NO               |
| RANDA                        | ALGAIDA     | 104       | NO                             | NO                   | NO                              | -                       | _                    | NO                                        | NO | NO               |
| ANDRAITX                     | ANDRAITX    | 4.040     | NO                             | NO                   | NO                              | ?                       | ?                    | SI                                        | NO | NO               |
| CAMP DE MAR                  | ANDRAITX    | 49        | NO                             | NO                   | NO                              | -                       | _                    | SI                                        | NO | SI               |
| S'ARRACO                     | ANDRAITX    | 483       | NO                             | NO                   | NO                              | _                       | f <del>-</del>       | NO                                        | NO | NO               |
| SAN TELMO                    | ANDRAITX    | 39        | NO                             | NO                   | NO                              | -                       | _                    | NO                                        | NO | ИО               |
| PUERTO DE ANDRAITX           | ANDRAITX    | 971       | NO                             | NO                   | NO                              | -                       | _                    | NO                                        | NO | NO               |
| SA COMA                      | ANDRAITX    | 349       | NO                             | NO                   | NO                              | -                       | -                    | NO                                        | NO | NO               |
| ARTA                         | ARTA        | 5.300     | SI                             | SI                   | SI                              | 1                       | 3                    | SI                                        | NO | NO               |
| COLONIA DE SAN PEDRO         | ARTA        | 286       | NO                             | NO                   | NO                              | -                       | -                    | NO                                        | NO | NO               |
| BANYALBUFAR                  | BANYALBUFAR | 502       | SI                             | SI                   | SI                              | 0                       | 0                    | SI                                        | NO | NO               |
| BINISALEM                    | BINISALEM   | 4.672     | NO                             | NO                   | NO                              | 3                       | 4                    | Parcial.                                  | NO | NO               |
| BUGER                        | BUGER       | 1.011     | SI                             | SI                   | SI                              | 0                       | 0                    |                                           | NO | NO               |
| ES PUJOL                     | BUGER       | 34        | SI                             | SI                   | SI                              | _                       | _                    | SI                                        | NO | NO               |
| BUÑOLA (casco)               | BUNYOLA     | 2.092     | SI                             | SI                   | SI                              | 2                       | 0                    | SI                                        | NO | NO               |
| PALMANYOLA                   | BUNYOLA     | 210       | SI                             | SI                   | SI                              | -                       | -                    | NO                                        | NO | NO               |
| ORIENT                       | BUNYOLA     | 10        | NO                             | NO                   | NO                              | -                       | -                    | NO                                        | NO | NO               |
| BAIX DEL PUIG                | BUNYOLA     | 28        | NO                             | NO                   | NO                              | _                       |                      | NO                                        | NO | ИО               |
| ES GARRIGO                   | BUNYOLA     | 65        | NO                             | NO                   | NO                              | -                       | -                    | NO                                        | NO | NO               |
| CALVIA-CAPDELLA-ILLE<br>TAS. | CALVIA      | 3.914     | NO                             | NO                   | NO                              | ?                       |                      | olo en <u>I</u><br>letas 225<br>lbitantes | NO | SI               |

. . / . . .

| Núcleo de población                                                    | Municipio  | Nº habit. | Red<br>agua | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro | Capta-<br>ciones | Camiones<br>cisterna | Alcant <u>a</u><br>rillado | Estación<br>depurad. | Emisario<br>submarino |
|------------------------------------------------------------------------|------------|-----------|-------------|----------------------|--------------------------------------|------------------|----------------------|----------------------------|----------------------|-----------------------|
| PORTALS NOUS (bajo))<br>BAHIA DE PALMA )                               | CALVIA     | 4.000     | NO          | NO                   | NO                                   | _                |                      | Portals N                  |                      | SI                    |
| SOL DE MALLORCA ) ZONA SANTA PONSA ) ROTES VELLES ) COSTA DE LA CALMA) | CALVIA     | 6•555     | NO          | NO                   | NO                                   | _                | <b>-</b> S1          | en Sol de<br>Mallorca      | e SI                 | NO                    |
| PAGUERA-CALA FORNELLS                                                  | CALVIA     | 15.300    | SI          | SI                   | SI                                   | _                | _                    | SI                         | SI                   | SI                    |
| PALMA NOVA-MAGALLUF) TORRE NOVA )                                      | CALVIA     | 38.000    | SI          | SI                   | SI                                   | -                | _                    | SI                         | SI                   | SI                    |
| SANTA PONSA-ROTES VE-<br>LLES                                          | CALVIA     | 15.200    | SI          | SI                   | SI                                   | -                | -                    | SI                         | SI                   | SI                    |
| CAMPANET                                                               | CAMPANET   | 2.190     | NO          | NO                   | NO                                   | 1                | 2                    | NO                         | NO                   | NO                    |
| CAMPOS DEL PUERTO                                                      | CAMPOS PTO | . 6.548   | NO          | NO                   | NO                                   | NO               | 6                    | NO                         | NO                   | NO                    |
| LA RAPITA                                                              | CAMPOS PTO | . 215     | NO          | NO                   | NO                                   | _                | _                    | NO                         | NO                   | NO                    |
| CAPDEPERA                                                              | CAPDEPERA  | 3.215     | NO          | NO                   | NO                                   | 10               | 5                    | NO                         | NO                   | NO                    |
| CALA RATJADA                                                           | CAPDEPERA  | 1.484     | SI          | NO                   | SI                                   | _                | _                    | SI                         | NO                   | SI                    |
| CONSELL                                                                | CONSELL    | 2.075     | NO          | NO                   | NO                                   | NO               | 2                    | NO                         | NO                   | NO                    |
| COSTITX                                                                | COSTITX    | 749       | NO          | NO                   | NO                                   | NO               | 1                    | NO                         | NO                   | NO                    |
| DEYA                                                                   | DEYA       | 395       | NO          | NO                   | NO                                   | 1                | NO                   | NO                         | NO                   | NO                    |
| ESCORCA                                                                | ESCORCA    | 100       | NO          | NO                   | NO                                   | NO               | NO                   | NO                         | NO                   | NO                    |

HOJA Nº 3

| Núcleo de población  | Municipio   | Nº habit | Red<br>• agua | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro | Capta-<br>ciones | Camiones<br>cisterna |                   | Estación<br>depurad. | Emisario<br>submarino |
|----------------------|-------------|----------|---------------|----------------------|--------------------------------------|------------------|----------------------|-------------------|----------------------|-----------------------|
| LLUCH                | ESCORCA     | 50       | SI            | SI                   | NO                                   | NO               | NO                   | SI                | NO                   | NO                    |
| ESPORLAS             | ESPORLAS    | 2.746    | SI            | SI                   | SI                                   | NO               | NO                   | SI                | SI                   | NO                    |
| SES ROTGETES         | ESPORLAS    | 65       | SI            | SI                   | SI                                   | NO               | NO                   | NO                | NO                   | NO                    |
| ES VERGER            | ESPORLAS    | 50       | SI            | SI                   | SI                                   | NO               | NO                   | NO                | NO                   | NO                    |
| S'ESGLAYETA          | ESPORLAS    | 35       | NO            | NO                   | NO                                   | NO               | NO                   | NO                | NO                   | NO                    |
| ESTALLENCHS          | ESTALLENC   | HS 531   | SI            | NO                   | NO                                   | NO               | NO                   | SI                | NO                   | NO                    |
| FELANITX             | FELANITX    | 9.115    | SI            | SI                   | SI                                   | 8                | 3                    | SI                | proyecto<br>aprobado | NO                    |
| PORTO COLOM          | FELANITX    | 800      | SI            | SI                   | SI                                   | -                | -                    | SI                | _                    | en<br>ejecució        |
| C'AS CONCOS          | FELANITX    | 867      | SI            | SI                   | SI                                   | _                | _                    | NO                | NO                   | NO                    |
| MARINA               | FELANITX    | 861      | NO            | NO                   | NO                                   | -                |                      | NO                | NO                   | NO                    |
| FORNALUTX            | FORNALUTX   | 522      | SI            | SI                   | SI                                   | NO               | NO                   | SI                | NO                   | NO                    |
| INCA                 | INCA        | 15.770   | SI            | SI                   | SI                                   | 2                | NO                   | SI                | SI                   | NO                    |
| INCA(población rural | ) INCA      | 1.750    | NO            | NO                   | NO                                   | - '              | NO                   | NO                | NO                   | NO                    |
| LLORET VISTA ALEGRE  | LLORET V.   | A 902    | NO            | NO                   | NO                                   | NO               | 1                    | NO                | NO                   | NO                    |
| LLOSETA              | LLOSETA     | 4.073    | NO            | NO                   | NO                                   | 2                | 4                    | parcial           | NO                   | NO                    |
| LLUBI                | LLUBI       | 2.183    | SI            | SI                   | SI                                   | 3                | 3                    | NO                | NO                   | NO                    |
| LLUCHMAYOR           | LLUCHMAYO   | R 9,174  | en<br>constru | cción -              | -                                    | 3                | 3                    | en<br>construcció | n –                  | _                     |
| EL ARENAL            | L LUCHMANOR | 24.000   | SI            | SI                   | SI                                   | -                | _                    | SI                | SI                   | 81                    |

| Núcleo de población        | Municipio   | Nº habit. | Red<br>agua    | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro | Capta-<br>ciones | Camiones<br>cisterna |                   | Estación<br>depurad. | Emisario<br>submarino |
|----------------------------|-------------|-----------|----------------|----------------------|--------------------------------------|------------------|----------------------|-------------------|----------------------|-----------------------|
| SON VERI-CALA BLAVA        | LLUCHMAYOR  | 1.000     | SI             | SI                   | SI                                   | _                | _                    | NO                | NO                   | NO                    |
| CALA PI                    | LLUCHMAYOR  | 15        | sī             | SI                   | SI                                   | _ ,              | _                    | NO                | NO                   | NO                    |
| BAHIA GRANDE               | LLUCHMAYOR  | 24        | sī             | SI                   | SI                                   | -                | _                    | SI                | NO                   | SI                    |
| MANACOR (centro)           | MANACOR     | 18.000    | en<br>construc | ción -               | _                                    | 8                | 10                   | en<br>construcció | n -                  | -                     |
| CALA MOREYA                | MANACOR     | 2.000     | SI             | SI                   | SI                                   | -                | -                    | parcial           | NO                   | SI                    |
| PORTO CRISTO               | MANACOR     | 12.000    | parcia         | al SI                | SI                                   | -                | -                    | SI                | NO                   | NO                    |
| PORTO CRISTO NOVO          | MANACOR     | 500       | SI             | SI                   | SI                                   | -                | -                    | SI                | SI                   | SI                    |
| PLAYA ROMANTICA            | MANACOR     | 2.000     | SI             | SI                   | SI                                   | -                | -                    | NO                | NO                   | NO                    |
| CALAS DE MALLORCA          | MANACOR     | 12.000    | SI             | SI                   | SI                                   | -                | -                    | SI                | SI                   | SI                    |
| CALA TROPICANA             | MANACOR     | 1.200     | SI             | SI                   | SI                                   | -                | _                    | NO                | NO                   | NO                    |
| CALA MURADA                | MANACOR     | 2.000     | SI             | SI                   | SI                                   | _                | -                    | NO                | NO                   | NO                    |
| SON MASSIA                 | MANACOR     | 600       | NO             | NO                   | NO                                   | -                | -                    | NO                | NO                   | NO                    |
| MANCOR DEL VALLE           | MANCOR      | 797       | SI             | SI                   | SI                                   | NO               | NO                   | SI                | NO                   | NO                    |
| MARIA DE LA SALUD          | M. DE SALUD | 2.054     | NO             | NO                   | NO                                   | 1                | 2                    | NO                | NO                   | NO                    |
| MARRATXI (Pont D'Inc       | a) Marratxí | 2.494     | SI             | SI                   | SI                                   | 1                | 3                    | SI                | NO                   | NO                    |
| URBANIZACION CAS<br>CAPITA | MARRATXI    | 134       | SI             | SI                   | SI                                   | -                | -                    | NO                | NO                   | NO                    |
| LA CABANETA                | MARRATXI    | 1.503     | NO             | NO                   | NO                                   | _                | -                    | NO                | NO                   | NO                    |
| PORTOL                     | MARRATXI    | 1.658     | NO             | NO                   | NO                                   | -                | _                    | NO                | NO                   | NO                    |
| PLA DE NA TESA             | MARRATXI    | 1.463     | NO             | NO                   | NO                                   | <del>-</del>     | _                    | NO                | NO                   | NO                    |
|                            |             |           |                |                      |                                      |                  |                      |                   |                      | · <del></del>         |

| Núcleo de población | Municipio 1 | Nº habit. | Red<br>agua | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro |    | Camiones<br>cisterna | Alcant <u>a</u><br>rillado | Estación<br>depuradora | Emisario<br>submarino |
|---------------------|-------------|-----------|-------------|----------------------|--------------------------------------|----|----------------------|----------------------------|------------------------|-----------------------|
| SON NEBOT           | MARRATXI    | 179       | NO          | NO                   | NO                                   | _  | _                    | NO                         | NO                     | NO                    |
| MONTUIRI            | MONTUIRI    | 2.561     | NO          | NO                   | NO                                   | 3  | 2                    | SI                         | NO                     | NO                    |
| MURO                | MURO        | 6.018     | SI          | SI                   | SI                                   | 1  | 3                    | SI                         | SI                     | NO                    |
| URB. LAS GAVIOTAS   | MURO        | 2.017     | sī          | NO                   | SI                                   | -  | -                    | SI                         | SI                     | NO                    |
| HOTEL PLAYA ESPERAN | MURO        | 475       | SI          | NO                   | SI                                   | -  | _                    | SI                         | SI                     | NO                    |
| ZA<br>URBANIZACION  | MURO        | 245       | SI          | NO                   | SI                                   | _  | · <del>-</del>       | SI                         | SI                     | NO                    |
| SES FOTGES<br>PETRA | PETRA       | 3.042     | parcial     | NO                   | SI                                   | NO | 1                    | NO                         | NO                     | NO                    |
| ARIANY              | PETRA       | 962       | NO          | NO                   | NO                                   | _  | _                    | NO                         | NO                     | NO                    |
| POLLENSA            | POLLENSA    | 7.826     | SI          | SI                   | SI                                   | 6  | 7                    | SI                         | SI                     | NO                    |
| PTO. DE POLLENSA    | POLLENSA    | 2.103     | SI          | SI                   | SI                                   | -  | -                    | SI                         | - SI                   | SI                    |
| CALA SAN VICENTE    | POLLENSA    | 369       | SI          | sī                   | SI                                   |    | -                    | SI                         | SI                     | SI                    |
| PORRERAS            | PORRERAS    | 4.655     | NO          | NO                   | NO                                   | 5  | 5                    | parcial                    | NO                     | NO                    |
| LA PUEBLA           | LA PUEBLA   | 10.134    | SI          | SI                   | SI                                   | NO | NO                   | SI                         | SI                     | NO                    |
| PUIGPUNYENT         | PUIGPUNYENT | 780       | NO          | NO                   | NO                                   | 1  | 2                    | NO                         | NO                     | NO                    |
| GALILEA             | PUIGPUNYENT | 277       | NO          | NO                   | NO                                   | -  | _                    | NO                         | NO                     | NO                    |
| SANCELLAS           | SANCELLAS   | 1.328     | NO          | NO                   | NO                                   |    |                      |                            |                        |                       |
| BINIALI             | SANCELLAS   | 243)      |             |                      |                                      |    |                      |                            |                        |                       |
| RUBERTS             | SANCELLAS   | 91)       |             |                      |                                      |    |                      |                            | NO.                    | NO                    |
| C'as CANAS          | SANCELLAS   | 46)       | NO          | NO                   | NO                                   | 2  | 2                    | ИО                         | NO                     | NO                    |
| JORNETS             | SANCELLAS   | 41)       |             |                      |                                      |    |                      |                            |                        |                       |

HOJA Nº 6

|                     |              |           |             |                      | ======                               |                  |                      | <b>=====</b> = | ==                   |           |
|---------------------|--------------|-----------|-------------|----------------------|--------------------------------------|------------------|----------------------|----------------|----------------------|-----------|
| Núcleo de población | Municipio N  | Iº habit. | Red<br>agua | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro | Capta-<br>ciones | Camiones<br>cisterna |                | Estación<br>depurad. | submarino |
| SON ARROSE          | SANCELLAS    | 23        | NO          | NO                   | ио                                   | 2                | 2                    | NO             | NO                   | NO        |
| SAN JUAN            | SAN JUAN     | 2.038     | NO          | NO                   | NO                                   | NO               | 5                    | parcial        | NO                   | NO        |
| SAN LORENZO         | SAN LORENZO  | 3.948     | NO          | NO                   | NO                                   | 1                | 3                    | NO             | NO                   | NO        |
| CALA MILLOR         | SAN LORENZO  |           | SI          | SI                   | SI                                   | _                |                      | SI             | NO                   | NO        |
| SANTA EUGENIA       | Sta. EUGENIA | 930       | NO          | NO                   | NO                                   | 1                | 2                    | NO             | NO                   | NO        |
| SANTA MARGARITA     | S. MARGARITA | 3.637     | NO          | NO                   | NO                                   | 7                | 9                    | NO             | NO                   | NO        |
| C'AN PICAFORT       | S. MARGARITA | 955       | parcial     | l sī                 | SI                                   | -                | _                    | NO             | NO                   | NO        |
| SON SERRA DE MARINA | S. MARGARITA | 117       | NO          | NO                   | NO                                   | _                | _                    | NO             | NO                   | NO        |
| SANTA MARIA         | SANTA MARIA  | 3.882     | parcial     | l no                 | SI                                   | -                | _                    | NO             | NO                   | NO        |
| SANTANYI            | SANTANYI     | 2.920     | parcial     | L SI                 | SI                                   | 3                | 6                    | NO             | NO                   | NO        |
| ALQUERIA BLANCA     | SANTANYI     | 877       | SI          | SI                   | SI                                   | -                | _                    | NO             | NO                   | NO        |
| CALONGE             | SANTANYI     | 463       | SI          | SI                   | sī                                   | -                | -                    | NO             | NO                   | NO        |
| LLOMBARTS           | SANTANYI     | 511       | NO          | NO                   | NO                                   | _                | -                    | NO             | NO                   | NO        |
| CALA D'OR           | SANTANYI     | 315       | SI          | SI                   | SI                                   | _                | -                    | SI             | NO                   | SI        |
| CALA FIGUERA        | SANTANYI     | 107       | SI          | SI                   | SI                                   | -                | _                    | NO             | NO                   | NO        |
| PORTO PETRO         | SANTANYI     | 68        | SI          | SI                   | SI                                   | -                | -                    | NO             | NO                   | NO        |
| CALA SANTANYI       | SANTANYI     | 400       | parcial     | . SI                 | SI                                   | -                | -                    | parcial        | NO                   | NO        |
| SELVA               | SELVA        | 1.639     | NO          | NO                   | NO                                   | -                | -                    | SI             | NO                   | NO        |
| CAIMARI             | SELVA        | 784       | NO          | NO                   | NO                                   | -                | -                    | SI             | NO                   | NO        |
|                     |              |           |             |                      |                                      |                  |                      |                |                      |           |

HOJA Nº 7

| Núcleo de población | Municipio     | Nº habit.  |               | Depósito<br>cabecera | Aparato<br>dosifi-<br>cador<br>cloro | Capta-<br>ciones | Camiones<br>cisterna | Alcant <u>a</u><br>rillado | Estación<br>depurado. | Emisario<br>submarino |
|---------------------|---------------|------------|---------------|----------------------|--------------------------------------|------------------|----------------------|----------------------------|-----------------------|-----------------------|
| MOSCARI             | SELVA         | 277        | NO            | NO                   | NO                                   | -                | _                    | NO                         | NO                    | NO                    |
| BINIAMAR            | SELVA         | 418        | NO            | NO                   | NO                                   | _                | -                    | NO                         | NO                    | NO                    |
| SES SALINES         | SES SALINES   | 1.779      | NO            | NO                   | NO                                   | 7                | 3                    | NO                         | NO                    | NO                    |
| COLONIA SANT JORDI  | SES SALINES   | 595        | NO            | NO                   | NO                                   | -                | -                    | ио                         | NO                    | NO                    |
| SINEU               | SINEU         | 3.087      | NO            | NO                   | NO                                   | _                | -                    | NO                         | NO                    | NO                    |
| SOLLER              | SOLLER        | 6.485      | SI            | sī                   | SI                                   | 1                | 2                    | SI                         | SI                    | NO                    |
| PUERTO DE SOLLER    | SOLLER        | 1.027      | SI            | SI                   | SI                                   | -                | -                    | SI                         | NO                    | SI                    |
| SON SERVERA         | SON SERVERA   | 3.840      | en<br>strucci | _                    | _                                    | 4                | 5                    | NO                         | NO                    | NO                    |
| CALA BONA           | SON SERVERA   |            | SI            | SI                   | SI                                   | _                | -                    | SI                         | NO                    | SI                    |
| CALA MILLOR         | SON SERVERA   | 6.430      | SI            | SI                   | SI                                   | -                | -                    | SI                         | NO                    | SI                    |
| CALIFORNIA          | SON SERVERA   | 640        | SI            | SI                   | SI                                   | _                | -                    | NO                         | NO                    | NO                    |
| PORT VERT           | SON SERVERA   | 330        | sı            | SI                   | SI                                   | -                |                      | NO                         | NO                    | NO                    |
| COSTA DE LOS PINOS  | SON SERVERA   | 1.745      | NO            | NO                   | NO                                   | <b>-</b> .       |                      | ио                         | NO                    | NO                    |
| EUROTEL             | SON SERVERA   | 900        | ио            | NO                   | NO                                   | _                | -                    | SI                         | NO                    | SI                    |
| VALLDEMOSA          | VALLDEMOSA    | 994        | SI            | SI                   | SI                                   | 1                | 1                    | SI                         | no funciona           | a NO                  |
| EL NOGUERAL         | VALLDEMOSA    | 39         | NO            | NO                   | NO                                   | •••              | -                    | NO                         | NO                    | NO                    |
| EL PUERTO           | VALLDEMOSA    | 30         | NO            | NO                   | NO                                   | _                | -                    | NO                         | NO                    | NO                    |
| VILLAFRANCA         | VILLAFRANCA   | 2.460      | NO            | NO                   | NO                                   | 1                | 2                    | NO                         | NO                    | NO                    |
| FUE                 | NTE DE LOS DA | ATOS: JEFA | TURA PR       | OVINCIAL             | DE SANIDA                            | DE BAL           | EARES                |                            |                       | ļ                     |

# ANEXO IV

Análisis de cloruros.

### LLANO DE PALMA

| <u>Nº</u><br>muestra | Toponimia                | <u>Nº</u><br>muestra | <u>Toponimia</u>           |
|----------------------|--------------------------|----------------------|----------------------------|
| 1                    | Mar Mediterráneo         | 31                   | C'an Costella              |
| 2                    | Hotel Isabel             | 32                   | Cas Forné                  |
| 3                    | C'an Vich                | 33                   | C'an Paladi                |
| 4                    | Hto. C'an Sastre         | 34                   | Base militar Son San Juar. |
| 5                    | Hto. C'an Pieras         | 35                   | C'an Balaguer              |
| 6                    | Hto. C'an Verd           | 36                   | Granja militar San Antonii |
| 7                    | C'an Nico                | 37                   | son san Juan Vey           |
| 8                    | C'an Escateta            | 38                   | C'an Serra                 |
| 9                    | El Aguila Nueva          | 39                   | Son Alfonso                |
| 10                   | Son Parera de Baix       | 40                   | C'as Estell                |
| 11                   | El Sosiego               | 41                   | Son Manuel                 |
| 12                   | C'an Magin Vey           | 42                   | Son Molinas                |
| 13                   | Son Suñer Nou            | 43                   | Son Sastre                 |
| 14                   | C'an Rabaso              | 44                   | Son Gudi Nou               |
| 15                   | Cas Vincle               | 45                   | Sa Graveta                 |
| 16                   | Cas Tabaquer             | 46                   | Son Pujol Vey              |
| 17                   | Son Cortera              | 47                   | Son Antiquet               |
| 18                   | Hto. C'an Fabregas       | 48                   | Son Pic                    |
| 19                   | Hto. C'an Morey          | 49                   | Son Rosiñol                |
| 20                   | Hto. C'an L'Amo Mateu    | 50                   | Cas Metge Matas            |
| 21                   | c'an Xigala              | 51                   | Son Gual 6                 |
| 22                   | Son Oliver               | 52                   | Es Caragol (Sa Farinera)   |
| 23                   | Son Fullana              | 53                   | Es Caragol (Son Fullana)   |
| 24                   | C'an Bort                | 54                   | Son Exelo                  |
| 25                   | C'an Vicort              | 55                   | C'an Mordux                |
| 26                   | Son Ferrer               | 56                   | C'an Morey                 |
| 27                   | S!hort des Pla           | 57                   | C'an Moya                  |
| 28                   | C'as Torroner            | 58                   | Es Caragol                 |
| 29                   | C'an Xiriquet            | 59                   | C'an Guidet                |
| 30                   | S'Aranjassa-Control 1er. | . 60                 | Son Amer Nou               |
| •                    | camino, 2º molino.       |                      |                            |
|                      |                          |                      |                            |

| <u>№</u><br>muestra | Toponimia                | <u>Nº</u><br>muestra | Toponimia    |
|---------------------|--------------------------|----------------------|--------------|
|                     |                          |                      |              |
| 61                  | Ses Deu                  | 91                   | Son Guillem  |
| 62                  | Son Llatxe Nou           | 92                   | Son Rosiñol  |
| 63                  | Son Pobaña               | 93                   | Son Falconer |
| 64                  | Hto. Puntiro             | 94                   | Estremera 3  |
| 65                  | C'an Teula               |                      |              |
| 66                  | C'an Fabregas            |                      |              |
| 67                  | Son Pelat                |                      |              |
| 68                  | Son Mi                   |                      |              |
| 69                  | Son Mi 2                 |                      |              |
| 70                  | Son Artigues             |                      |              |
| 71                  | C'an Calistro            |                      |              |
| 72                  | Sa Tanca                 |                      |              |
| 73                  | C'an Paladi              |                      |              |
| 74                  | C'an Pere D'Inca         |                      |              |
| <b>7</b> 5          | C'an Galania             |                      |              |
| 76                  | C'an Flo                 |                      |              |
| 77                  | Cas Marques              |                      | •            |
| 78                  | Pretensados Fiol         |                      |              |
| 79                  | C'an Neva Nou            |                      |              |
| 80                  | Es Colomer               |                      | •            |
| 81                  | Es Pinerel de C'an Truji | 110                  |              |
| 82                  | Son Antem                |                      |              |
| 83                  | Son pi                   |                      |              |
| 84                  | Hto. Sa Rafalera         |                      |              |
| 85                  | Cas Erret                |                      |              |
| 86                  | C'an Pol                 |                      |              |
| 87                  | Ses cases noves          |                      |              |
| 88                  | Sa Cabana                |                      |              |
| 89                  | Cas Salom                |                      |              |
| 90                  | Son Llompart             |                      |              |

# RED ISOCLORUROS LLANO DE PALMA

# Determinación de cloruros en mg/l.

# Muestras tomadas en Mayo de 1980

# Realizados I.G.M.E.-Palma

| Realizados I.G.M.EPalma |                    |                   |                     |  |  |
|-------------------------|--------------------|-------------------|---------------------|--|--|
| Nº muestra              | mg/l. de<br>ion cl | <u>Nº muestra</u> | mg/l. de<br>ion cl- |  |  |
|                         |                    |                   |                     |  |  |
| 1                       | 20.750             | 28                | 1384                |  |  |
| 2                       | 2272               | 29                | 2130                |  |  |
| 3                       | 1420               | 30                | 2236                |  |  |
| 4                       | 568                | 31                | 3656                |  |  |
| 5                       | 532                | 32                | 2520                |  |  |
| 6                       | 248                | 33                | 4047                |  |  |
| 7                       | 568                | 34                | 1313                |  |  |
| 8                       | 532                | 35                | 3692                |  |  |
| 9                       | 2769               | 36                | 4047                |  |  |
| 10                      | 1739               | 37                | 4650                |  |  |
| 11                      | 1207               | 38                | 2449                |  |  |
| 12                      | 2698               | 39                | 2946                |  |  |
| 13                      | 5183               | 40                | 3 <del>44</del> 3   |  |  |
| 14                      | 3763               | 41                | 2449                |  |  |
| 15                      | 3763               | 42                | 603                 |  |  |
| 16                      |                    | 43                | 532                 |  |  |
| 1 7                     | 3195               | 44                | 887                 |  |  |
| 18                      | 3088               | .45               | 3159                |  |  |
| 19                      |                    | 46                | 1846                |  |  |
| 20                      | 1171               | 47                | 1668                |  |  |
| 21                      | 2165               | 48                | 781                 |  |  |
| 22                      | 1597               | 49                | 1846                |  |  |
| 23                      | 1207               | 50                | 958                 |  |  |
| 24                      | 887                | 51                | 1349                |  |  |
| 25                      | 2982               | 52                | 710                 |  |  |
| 26                      | 532                | 53                | 568                 |  |  |
| 27                      | 745                | 54                | 426                 |  |  |

| Nº muestra | mg/l. de    | Nº muestra | mg/l. de |
|------------|-------------|------------|----------|
|            | ión Cl      |            | ión Cl   |
|            |             | _          |          |
| 55         | 1349        | 85         | 284      |
| 56         | 1065        | 86         | 248      |
| 57         | 284         | 87         | 1.846    |
| 58         | 355         | 88         | 142      |
| 59         |             | 89         | 213      |
| 60         | 177         | 90         | 142      |
| 61         | <del></del> | 91         | 213      |
| 62         | 958 1       | 92         | 177      |
| 63         | 710         | 93         | 106      |
| 64         | 319         | 94         | 106      |
| 65         | 177         |            | •        |
| 66         | 674         |            |          |
| 67         |             |            |          |
| 68         |             |            |          |
| 69         | 319         |            |          |
| <b>7</b> 0 | 355         |            |          |
| 71         | 284         |            |          |
| 72         | 284         |            |          |
| 73         | 390         |            |          |
| 74         | 248         |            |          |
| 75         | 248         |            |          |
| 76         | 248         |            |          |
| 77         | 426         |            |          |
| 78         | 781         |            |          |
| 79         | 284         |            |          |
| 80         | 497         |            |          |
| 81         | 319         | •          |          |
| 82         | 426         |            |          |
| 83         | 355         |            |          |
| 84         | 426         | • D        |          |

# RED ISOCLORUROS DEL LLANO DE PALMA

# Determinación de Cloruros Muestras tomadas en Septiembre 1980

| Nº de<br>muestra | <u>mg./l.</u>   | <u>Nº de</u><br>muestra | mg./1. |
|------------------|-----------------|-------------------------|--------|
| 1                | 21.052          | 28                      | 1.420  |
| 2                | 2.485           | 29                      | 2.201  |
| 3                | 1.207           | 30                      | 2.379  |
| 4                | 497             | 31                      | 3.586  |
| 5                | 525             | 32                      | 2.688  |
| 6                | 213             | 33                      | 3.799  |
| 7                | <del>4</del> 61 | 34                      | 1.366  |
| 8                | 535             | 35                      | 4.029  |
| 9                | 3.195           | 36                      | 4.189  |
| 10               | 1.633           | 37                      | 4.722  |
| 11               | 959             | 38                      | 3.567  |
| 12               | 2.521           | 39                      | 2.982  |
| 13               | 5.645           | <b>4</b> 0              | 3.603  |
| 14               | 3.621           | 41                      | 2.485  |
| 15               | 3.550           | 42                      | -      |
| 16               | 2.130           | 43                      | 674    |
| 17               | 3.621           | 44                      | 923    |
| 18               | 1.882           | 45                      | 3.124  |
| 19               | 5.148           | 46                      | -      |
| 20               | 1.136           | 47                      | 1.917  |
| 21               | 2.237           | 48                      | 1.437  |
| 22               | 1.527           | 49                      | 1.740  |
| 23               | 1.172           | 50                      | 976    |
| 24               | 923             | 51                      | 1331   |
| 25               | 2.964           | 52                      | -      |
| 26               | 497             | 53                      | 532    |
| 27               | 710             | 54                      | 426    |

| <u>Nº de</u><br>muestra | mg/l.         | <u>Nº de</u><br>muestra | mg/1. |
|-------------------------|---------------|-------------------------|-------|
| 55                      | <b>1.</b> 420 | 84                      | 426   |
| 56                      | 746           | 85                      | 219   |
| 57                      | 249           | 86                      | 248   |
| 58                      | 391           | 87                      | 1988  |
| 59                      | 266           | 88                      | 213   |
| 60                      | 230           | 89                      | 213   |
| , 61                    | 994           | 90                      | 328   |
| 62                      | 1.473         | 91                      | 177   |
| 63                      | 727           | 92                      | 229   |
| 64                      | 266           | 93                      | _     |
| 65                      | 249           | 94                      | _     |
| 66                      | -             |                         |       |
| 67                      | 391           |                         |       |
| 68                      | -             |                         |       |
| 69                      | 550           |                         |       |
| <b>7</b> 0              | 408           |                         |       |
| 71                      | 337           |                         |       |
| 72                      | 249           |                         |       |
| 73·                     | 301           |                         |       |
| 74                      | 249           |                         |       |
| 75                      | -             |                         |       |
| 76                      | 284           |                         |       |
| 77                      | 408           |                         |       |
| 78                      | 639           |                         |       |
| 79                      | 177           |                         |       |
| 80                      | 513           |                         |       |
| 81                      | 816           |                         |       |
| 82                      | 461           |                         |       |
| 83                      | 426           |                         |       |

4

# RED GENERAL DEL LLANO DE PALMA

# Determinación de Cloruros Muestras tomadas en Septiembre 1.980

| Nº de<br>muestra | mg/l. | <u>Nº de</u><br>muestra | <u>mg/1.</u> |
|------------------|-------|-------------------------|--------------|
| 1                | 497   | 26                      | 1.988        |
| 2                | 189   | 27                      | 177          |
| 3                | 461   | 28                      | 177          |
| 4                | 1.527 | 29                      | 1.420        |
| 5                | 1.331 | 30                      | 2.485        |
| 6                | 1.473 | 31                      | 426          |
| 7                | 3.621 | 32                      | 3.567:       |
| 8                | 4.189 | 33                      | 3.586        |
| 9                | 674   | 34                      | <b>4</b> 08  |
| 10               | 3.124 | 35                      | 229          |
| 11               | 249   | son san Jua             | ın           |
| 12               | 266   |                         |              |
| 13               | 513   |                         |              |
| 14               | 426   |                         |              |
| 15               | 674   |                         |              |
| 16               | 426   | •                       |              |
| 17               | 319   |                         |              |
| 18               | 301   |                         |              |
| 19               | 177   |                         |              |
| 20               | 213   |                         |              |
| ` 21             | -     | i.                      |              |
| 22               | 213   |                         |              |
| 23               | • 259 |                         |              |
| 24               | 248   |                         |              |
| 25               | 284   |                         |              |

RED ESPECIFICA DE SANT JORDI

## Determinación de cloruros en mg/l.

## Muestras tomadas en Mayo de 1980 Realizados I.G.M.E.-Palma

| Nº muestra | $\frac{\text{mg/l. en}}{\text{den}}$ |
|------------|--------------------------------------|
|            | ion Cl                               |
|            |                                      |
| 1          | 319                                  |
| 2          | 2521                                 |
| 3          | 2095                                 |
| 4          | - 1598                               |
| 5          | 1118                                 |
| 6          | 959                                  |
| 7          | 1118                                 |
| 8          | 3799                                 |
| 9          | 2521                                 |
| 10         | 4189                                 |
| 11         |                                      |
| 12         | 727                                  |
| 13         | 3692                                 |
| 14         | 3231                                 |
| 15         |                                      |
| 16         | 869                                  |
| 17         | 3053                                 |
| 18         | 1420                                 |

REALIZADOS EN:

PALMA 8- OCTUBRE - 1980

#### LA PUEBLA

Análisis para la determinación de cloruros en mg/l.

Muestras tomadas en Junio, Julio y Agosto de 1980

I.G.M.E. - Palma.

Método utilizado: nitrato de plata y como indicador dicromato de plata.

| ·                    | mg/l.       | ión Cl    |
|----------------------|-------------|-----------|
|                      | Junio-Julio | 26 Agosto |
|                      |             |           |
| Ca Na Pucha          | 1.562       |           |
| S-30                 | 106         |           |
| Son Ventura          | 71          | 106       |
| B. March             | 142         | 142       |
| Ayto. Muro           | 177         | 213       |
| C'an Xuia            | 106         | 142       |
| Son Verdera de Baix  | 142         | 142       |
| S-2                  | 177         | 142       |
| O-X                  | 142         |           |
| <b>M</b> -22         | 71          |           |
| S-10                 | 142         |           |
| Son Pons             | 85          |           |
| Ayto. Llubí S. Nuevo | 142         |           |
| Ayto. La Puebla      | 142         | 106       |
| S-5                  | 170         | 142       |
| s-26                 | 128         |           |
| Son Mas              | 90          | 106       |
| Cán Manma            | 142         | 142       |
| Depuradora Inca      | 255         | 319       |
| Ayto. Llubí S. Viejo | 128         |           |
| S-3                  | 227         | 213       |
| s-18                 | 113         |           |
| Es Cos               | 156         | 177       |

#### INCA-LA PUEBLA

Muestras tomadas en Septiembre de 1980 Determinación de fosfatos en mg/l. Análisis realizados el 5/10/80. I.G.M.E. - Palma Método utilizado: espectofotometro DR-2 de HACH

| 1                      |              | mg/l. |
|------------------------|--------------|-------|
| Ayuntamiento de Muro   |              | 0,34  |
| Es Cos                 |              | 0,08  |
| Ayuntamiento La Puebla |              | 0,06  |
| Son Ventura            |              | 0,07  |
| Depuradora de Inca     | errores.     | 24,65 |
| Ayuntamiento de Llubi. | Sondeo nuevo | 0,02  |
| Ayuntamiento de Llubí. | Sondeo viejo |       |
| P-4                    |              |       |
| s-10                   |              | 0,02  |
| s-16                   |              |       |
| S-30                   |              | 0,04  |
| Trayecto agua residual |              | -     |

#### LLUCHMAYOR-CAMPOS

Análisis para la determinación de cloruros en mg/l.
Muestras tomadas en Abril de 1980. I.G.M.E. - Palma
Método utilizado: nitrato de plata y como indicador
dicromato de plata.

| Nº en plano | mg/l. Cl | Nº en plano | mg/1. C1 |
|-------------|----------|-------------|----------|
| 1           | -        | 26          | 1.667    |
| 2           | -        | 27          | 1.737    |
| 3           | _        | 28          | _        |
| 4           | - man    | 29          | 2.270    |
| 5           | 1.278    | 30          | 1.775    |
| 6           | 852      | 31          | 1.632    |
| 7           | 1.207    | 32          | 1.987    |
| 8           | -        | 33          | 2.165    |
| 9           |          | 34          | 1.987    |
| 10          | 1.810    | 35          | -        |
| 11          | 1.312    | 36          | 1.952    |
| 12          | 1.455    | 37          | 1.952    |
| 13          | -        | 38          | 1.667    |
| 14          | 1.455    | 39          | 2.307    |
| 15          | 1,632    | 40          | 2.697    |
| 16          | 1.490    | 41          | 2.342    |
| 17          | 1.490    | 42          | 2.307    |
| 18          | 1.242    | 43          | 1.490    |
| 19          | -        | 44          | 2.980    |
| 20          | -        | 45          | 2.377    |
| 21          | 2.092    | 46          | -        |
| 22          | -        | 47          | 2.485    |
| 23          | -        | 48          | 2.342    |
| 24          | 1.560    | 49          | -        |
| 25          | 1.667    | 50          | -        |

| Nº en plano | mg/1. C1 | Nº en plano mg/l. |                |  |  |  |  |  |
|-------------|----------|-------------------|----------------|--|--|--|--|--|
|             |          |                   |                |  |  |  |  |  |
| 51          | -        | 81                | 3.122          |  |  |  |  |  |
| 52          | -        | 82                | 3.052          |  |  |  |  |  |
| 53          | 2.342    | 83                | 3.372          |  |  |  |  |  |
| 54          | 2.057    | 84                | 3.300          |  |  |  |  |  |
| 55          | 2.057    | 85                | 3.335          |  |  |  |  |  |
| 56          | 2.057    | 86                | 4.082          |  |  |  |  |  |
| 57          | 2.307    | 87                | 4.152          |  |  |  |  |  |
| 58          | 2.945    | 88                | -              |  |  |  |  |  |
| 59          | 2.910    | 89                | -              |  |  |  |  |  |
| 60          | 3.230    | 90                | 4.225          |  |  |  |  |  |
| 61          | -        | 91                | 4.187          |  |  |  |  |  |
| 62          | 3.550    | 92                | 3.832          |  |  |  |  |  |
| 63          | 2.980    | 93                |                |  |  |  |  |  |
| 64          | -        | 94                | 4.507          |  |  |  |  |  |
| 65          | 2.590    | 95                | 4.400          |  |  |  |  |  |
| 66          | -        | 96                | _              |  |  |  |  |  |
| 67          | -        | 97                | . <del>-</del> |  |  |  |  |  |
| 68          | -        | 98                | 3.905          |  |  |  |  |  |
| 69          | 2.910    | 99                | 3.550          |  |  |  |  |  |
| 70          | 2.910    | 100               | _              |  |  |  |  |  |
| 71          | -        | 101               |                |  |  |  |  |  |
| 72          | 3.087    | 102               | _              |  |  |  |  |  |
| 73          | 3.477    | 103               | _              |  |  |  |  |  |
| 74          | 3.550    | 104               | 4.365          |  |  |  |  |  |
| 75          | 3.477    | 105               | 4.827          |  |  |  |  |  |
| 76          | 3.195    | 106               | 4.507          |  |  |  |  |  |
| 77          | 3.620    | 107               | 4.970          |  |  |  |  |  |
| 78          | 3.550    | 108               | 5.252          |  |  |  |  |  |
| 79          | 3.372    | 109               | 5.272          |  |  |  |  |  |
| 80          | 3.442    | 110               | _              |  |  |  |  |  |

| Nº en plano | mg/1. C1 | <u>Nº</u> en plano | mg/l. Cl |
|-------------|----------|--------------------|----------|
| 111         |          |                    |          |
| 111         | -        |                    |          |
| 112         | 4.615    |                    |          |
| 113         | 5.715    |                    |          |
| 114         | 4.365    |                    |          |
| 115         | -        |                    |          |
| 116         | _        |                    |          |
| 117         | -        |                    |          |
| 118         | 5.182    |                    |          |
| 119         | 5.040    | energy (           |          |
| 120         |          |                    |          |
| 121         | 4.225    |                    |          |
| 122         | 4.082    |                    |          |
| 123         | _        |                    |          |
| 124         | -        |                    |          |
| 125         | -        |                    |          |
| 126         | 5.465    |                    |          |
| 127         | 6.567    |                    |          |
| 128         | 6.105    |                    |          |

#### RED ISOCLORUROS DE LLUCMAYOR

Determinación cloruros en mg/l. Muestras tomadas en Septiembre de 1960

## Análisis realizados el 10/10/80. I.G.M.E. - Palma

| <u>Nº en plano</u> | $\frac{16n \text{ Cl}^{-}}{mg/1.}$ | Nº en plano | <u>  15n   31   mg/l.</u> |
|--------------------|------------------------------------|-------------|---------------------------|
| 1                  | _                                  | 26          | 2.059                     |
| 2                  | -                                  | 27          | 1.863                     |
| 3                  | <u>-</u>                           | 28          | 2.342                     |
| 4                  | -                                  | 29          | -                         |
| 5                  | 1.278                              | 30          | 1.775                     |
| 6                  | 852                                | 31          | 2.750                     |
| 7                  | 1.207                              | 32          | 2.094                     |
| 8                  | -                                  | 33          | 2.307                     |
| 9                  | -                                  | 34          | 2 <b>.</b> 216            |
| 10                 | 2,076                              | 35          | _                         |
| 11                 | 1.491                              | 36          | 2.165                     |
| 12                 | 1,863                              | 37          | 2.023                     |
| 13                 | -                                  | 38'         | 1.739                     |
| 14                 | 1,668                              | 39          | 2.556                     |
| 15                 | 1.775                              | 40          | 2.932                     |
| 16                 | -                                  | 41          | 2.556                     |
| 17                 | 1.562                              | 42          | 2,609                     |
| 18                 | 1.420                              | 43          | 2.378                     |
| 19                 | -                                  | 44          | 3.212                     |
| 20                 | -                                  | 45          | 2,627                     |
| 21                 | 2.236                              | 46          | _                         |
| 22                 | -                                  | 47          | 2.733                     |
| 23                 | -                                  | 48          | 2.573                     |
| 24                 | -                                  | 49          | 2.502                     |
| 25                 | 1.846                              | 50          | 2.165                     |

|             | 16n C1   |                                         | Ion Cl.               |  |  |
|-------------|----------|-----------------------------------------|-----------------------|--|--|
| ∷º en plano | mg/1.    | Nº en plano                             | $m \in /1$ .          |  |  |
| 51          | 2537     |                                         |                       |  |  |
| 52          |          | 82                                      | 3212                  |  |  |
|             | 2627     | 83                                      | -                     |  |  |
| 53          | <u> </u> | 84                                      | -                     |  |  |
| 54          | •••      | 85                                      | •••                   |  |  |
| 55          | •        | 86                                      | 4118                  |  |  |
| 56          | 2272     | 87                                      | 4437                  |  |  |
| 57          | 2733     | 88                                      | 3958                  |  |  |
| 58          | 3124     | 89                                      | <b>4</b> 8 <b>9</b> 9 |  |  |
| 59          | 3940     | 90                                      | 4596                  |  |  |
| 60          | 3763     | 91                                      | 4366                  |  |  |
| 61          | 3124     | 92                                      | 4260                  |  |  |
| 62          | 3869     | 93                                      | 4242                  |  |  |
| 63          | 3195     | 94                                      | 4632                  |  |  |
| 64          | -        | 95                                      | 4721                  |  |  |
| 65          | 2840     | 96                                      | _                     |  |  |
| 66          | 2875     | 97                                      | _                     |  |  |
| 67          | ••       | 98                                      | -                     |  |  |
| 68          | -        | 99                                      | 3922                  |  |  |
| 69          | -        | 100                                     | _                     |  |  |
| 70          | -        | 101                                     | 3976                  |  |  |
| 71          | 2591     | 102                                     | _                     |  |  |
| 72          | 3159     | 103                                     | _                     |  |  |
| 73          | 3851     | 104                                     | _                     |  |  |
| 74          | 4118     | 105                                     | 5076                  |  |  |
| 75          | 3692     | 106                                     | 4579                  |  |  |
| 76          | 3656     | 107                                     | 4189                  |  |  |
| 77          | _        | 108                                     |                       |  |  |
| 78          | 3869     | 109                                     | 6496                  |  |  |
| 79          | 3692     | 110                                     | <del>-</del>          |  |  |
| 30          | 3763     | 111                                     | _                     |  |  |
| 31          | 3585     | 112                                     | _                     |  |  |
|             |          | • • • • • • · · · · · · · · · · · · · · |                       |  |  |

| me en plano | $\frac{16n \text{ Cl}-}{mg/1.}$ | Nº en plano | 16n Cl mg/l. |
|-------------|---------------------------------|-------------|--------------|
| 113         | -                               |             |              |
| 114         | 4544                            |             |              |
| 115         | 4934                            |             |              |
| 116         | -                               |             |              |
| 117         | <del></del>                     |             |              |
| 113         | 5520                            |             |              |
| 119         |                                 |             |              |
| 120         | 5005                            |             |              |
| 121         | -                               |             |              |
| 122         | 4455                            |             |              |
| 123         | -                               |             |              |
| 124         | -                               |             |              |
| 125         | -                               |             |              |
| 126         | 5751                            |             |              |
| 127         | 6514                            |             |              |
| 128         | 6248                            |             |              |
| 129         | 5964                            |             |              |
| 130         | 3070                            |             |              |
| 1 31        | 1775                            |             |              |
| 132         | 5129                            | •           |              |
| 133         | 5626                            |             |              |
| 1 34        | 2158                            |             |              |
| 135         | 4487                            |             |              |
| 136         | 2875                            |             |              |

 $\int$ 

#### RED DE CLORUROS DE FELANITX

Muestras tomadas en Julio de 1980.

Análisis para la determinación de cloruros en mg/l.

I.G.M.E. - Palma

| Nº en plano | mg/l. en ion cl |
|-------------|-----------------|
|             |                 |
| 01          | -               |
| 02          | 177             |
| 03          | 177             |
| 04          | 319             |
| 06          | _               |
| 07          | 155             |
| 08          | 177             |
| 09          | 177             |
| 011         | -               |
| 012         | 177             |
| 018         | 177             |
| 021         | 603             |
| 022         | 85              |
| 023         | 142             |
| 024         | 177             |

## RED DE CLORUROS DE FELANITX

Muestras tomadas el 2 de Octubre de 1980.

Análisis para la determinación de cloruros en mg/l.

I.G.M.E. - Palma

Método utilizado: nitrato de plata y como indicador dicromato potásico.

| Nº en plano | mg/l. de ión Cl |
|-------------|-----------------|
| 01          |                 |
| 01          |                 |
| 02          | 213             |
| 03          | _               |
| 04          | 408             |
| 06          | 1.189           |
| 07          | _               |
| 08          | 213             |
| 09          | 213             |
| 011         | 213             |
| 012         | 213             |
| 018         | 213             |
| 021         |                 |
| 022         | _               |
| 023         | 177             |
| 024         | 213             |

#### ANEXO V

Análisis completos

#### RED GENERAL DEL LLANO DE PALMA

#### ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: MAYO 1980

FECHA REALIZACION ANALISIS: 23/6/80

|               | <b></b>                  | T ECITA                               | TOMA DE                                 | HUESIKA:                   | PAIO 19      | 00           |                          | <del></del>  |                 | FECHA RE      | ALIZACION    | ARALISIS     | 23/0/  | / 00          |                               |                           |
|---------------|--------------------------|---------------------------------------|-----------------------------------------|----------------------------|--------------|--------------|--------------------------|--------------|-----------------|---------------|--------------|--------------|--------|---------------|-------------------------------|---------------------------|
| Nº<br>CONTROL | Cl <sup>-</sup><br>mg/l. | SO <sub>2</sub> <sup>2</sup><br>mg/l. | CQ <sub>3</sub> H <sup>2</sup><br>mg/t. | CO <sub>3</sub> *<br>mg/l. | NO3<br>mg/l. | NO2<br>mg/l. | PQ <sup>Ξ</sup><br>mg/l. | Na*<br>mg/l. | Hig **<br>mg/l. | Ca**<br>mg/l. | K *<br>mg/l. | DUREZA<br>°F | D.Q.O. | рH            | CONDUCTIMEDAD<br>/# m hos/cm. | DETERGENTES<br>no iónicos |
| 1             | 568                      | 38,13                                 | 244                                     |                            | 15,4         |              |                          | 352          | 31,62           | 108           | 5,56         | 40           | 1,64   | 8,3           | 1.810                         |                           |
| 2             | 492                      | 16,91                                 | 268,40                                  |                            | 32,80        |              |                          | 49           | 26,50           | 68,40         | 3,01         | 28           | 1,27   | 8,39          | 650                           |                           |
| 3             | 568                      | 18                                    | 256,20                                  |                            | 38,72        |              |                          | 331          | 34,64           | 135           | 4,59         | 48           | 1,88   | 7,91          | 2.350                         |                           |
| 4             | 1.597                    | 40                                    | 280,60                                  |                            | 88,90        |              |                          | 616          | 137,97          | 383           | 11,20        | 140          | 2,2    | 7 <b>,</b> 82 | 4.850                         |                           |
| 5             | 1.349                    | 44,88                                 | 292,80                                  |                            | 74,8         |              |                          | 472,88       | 130,07          | 306           | 35,90        | 130          | 2,2    | 7,92          | 4.250                         |                           |
| 6             | 958                      | 44,20                                 | 329,40                                  |                            | 39,6         |              |                          | 557          | 109,40          | 212           | 9,95         | 98           | 2,3    | 7,82          | 4.250                         |                           |
| 7             | 3.195                    | 49,95                                 | 414,80                                  |                            | 82,20        |              |                          | 2.106        | 283,84          | 365           | 28,40        | 208          | 2,3    | 7 <b>,</b> 76 | 9•400                         | :                         |
| 8             | 4.047                    | 164,50                                | 305                                     |                            | 34,32        |              |                          | 1.256        | 292,96          | 566           | 13,30        | 262          | 2,25   | 7,70          | 10.000                        |                           |
| 9             | 532                      | 58,83                                 | 305                                     |                            | 117          |              |                          | 74           | 81,45           | 218           | 8,17         | 88           | 1,95   | 7,75          | 2,250                         |                           |
| 10            | 3.159                    | 127,71                                | 353,80                                  |                            | 38,72        |              |                          | 1.307        | 228,53          | 248           | 48,20        | 156          | 2,2    | 7,82          | 9.500                         |                           |
| 11            | 248                      | 38,25                                 | 437                                     |                            | 83           |              |                          | 47           | 41,33           | 106           | 3,34         | 44           | 1,4    | 8,20          | 1.160                         |                           |
| 12            | 319                      | 19,36                                 | 335,50                                  |                            | 58,80        |              |                          | 71           | 28,57           | 80,90         | 4,63         | 32           | 2,2    | 8,15          | 1.150                         |                           |
| 13            | 497                      | 23,55                                 | 317,20                                  |                            | 70,4         |              |                          | 146          | 37,68           | 162           | 4,08         | 56           | 2,1    | 7,90          | 1.920                         |                           |
| 14            | 355                      | 48,29                                 | 329,40                                  |                            | 88,30        |              |                          | 83           | 43,76           | 144           | 2,84         | 54           | 1,94   | 7,82          | 1.450                         |                           |
| 15            | 688                      | 26,55                                 | 323,30                                  |                            | 72,10        |              |                          | 152          | 49,23           | 175           | 4,15         | 64           | 2,1    | 8             | 2.180                         |                           |
|               |                          |                                       |                                         |                            |              |              |                          |              |                 |               |              |              |        |               |                               |                           |
|               |                          |                                       |                                         |                            |              |              |                          |              |                 |               |              |              |        |               |                               |                           |
|               |                          |                                       |                                         |                            |              |              |                          |              |                 |               |              |              |        |               |                               |                           |
|               |                          |                                       |                                         |                            |              |              |                          |              |                 |               |              |              | ]      |               |                               |                           |

TIT

#### RED GENERAL DEL LLANO DE PALMA

#### ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: MAYO 1980

#### FECHA REALIZACION ANALISIS:

| •    |               |               | FECHA                                 | TOMA DE                     | MUESTRA:                   | MAYO 19                  | 80           |              |               |                           | FECHA RE       | ALIZACION     | ANALISIS      | :             |      |                              |                           |
|------|---------------|---------------|---------------------------------------|-----------------------------|----------------------------|--------------------------|--------------|--------------|---------------|---------------------------|----------------|---------------|---------------|---------------|------|------------------------------|---------------------------|
| :    | Nº<br>CONTROL | Cl T<br>mg/l. | SO <sub>2</sub> <sup>2</sup><br>mg/l. | CO <sub>3</sub> H*<br>mg/l. | CO <sub>3</sub> "<br>mg/l. | NO <sub>3</sub><br>mg/l. | NO2<br>mg/l. | PQ≛<br>mg/l. | Na.*<br>mg/l. | Mg <sup>++</sup><br>mg/l. | Ca**<br>mg/l.  | K *<br>mg/l.  | DUREZA<br>° F | D.Q.O.        | pH   | CONDUCTIMDAD<br>/# m hos/cm. | DETERGENTES<br>no iónicos |
| •    | 16            | 188           | 20,64                                 | 317,20                      |                            | 38,60                    |              |              | 46            | 52,27                     | 106            | 2,7           | 48            | 2,15          | 8    | 1,160                        |                           |
|      | 17            | 213           | 20,73                                 | 339,40                      |                            | 28                       |              |              | 68            | 49,84                     | 118            | 4,88          | 50            | 1,85          | 8,25 | 1.500                        |                           |
|      | 18            | 390           | 15,91                                 | 341,60                      |                            | 19                       |              |              | 76            | 60,66                     | 92 <b>,</b> 10 | 3 <b>,</b> 75 | 48            | 1 <b>,</b> 79 | 8,15 | 1.410                        |                           |
|      | 19            | 149           | 75,80                                 | 335,50                      |                            | 23,50                    |              |              | 55            | 25,89                     | 85,40          | 2,50          | 32            | 1,95          | 8,05 | 830                          |                           |
|      | 20            | 142           | 25,27                                 | 347,70                      |                            | 28,40                    |              |              | 37            | 36,84                     | 99,30          | 2,62          | 40            | 1,74          | 8,05 | 810                          | -                         |
|      | 21            | 106           | 14,09                                 | 376                         |                            | 16,90                    |              |              | 35            | 25,77                     | 93,60          | 1 <b>,</b> 97 | 34            | 1,88          | 7,85 | 660                          |                           |
|      | 22            | 213           | 25,45                                 | 315                         |                            | 66,20                    |              |              | 61            | 39,51                     | 119            | 2,96          | 46            | 1,97          | 7,76 | 809                          |                           |
| :    | 23            | 163           | 27,64                                 | 314,80                      |                            | 205                      |              |              | 78            | 32,21                     | 155            | 31,70         | 52            | 2,1           | 7,83 | 1.290                        |                           |
|      | 24            | 145           | 25,45                                 | 315                         | <u>.</u> .                 | 49,30                    |              |              | 48            | 34,65                     | 103            | 3,77          | 40            | •             | 8,20 |                              |                           |
| 1    | 25            | 180           | 13,36                                 | 268,40                      |                            | 53,70                    |              |              | 57            | 31,61                     | 84,30          |               | 1             | 1,55          |      |                              |                           |
|      | 26            | 1.846         | 129,76                                | 315                         |                            | 16,50                    |              |              | 570           | 145,26                    | 201            | 11,30         | 110           | 1,78          |      | 4.670                        |                           |
|      | 27            | 213           | 16,36                                 | 366                         |                            | 41,40                    |              |              | 30            | 43,64                     | 96,20          |               | 42            |               |      |                              |                           |
| 1:   | 28            | 82            | 3,73                                  | 244                         |                            | 42,10                    |              |              | 67            | 18,48                     |                |               |               |               |      |                              |                           |
|      | 29            | 1.349         | 63,41                                 | 392,80                      |                            | 117                      | -            |              | 399           | 94,82                     | 380            | 10            | 134           |               |      |                              |                           |
|      | 30            | 2.449         | 144,88                                | 317,20                      |                            | 140                      |              |              | 1.391         | 194                       | 177            | 69,40         | 124           | 1,60          | 7,95 | 7.650                        |                           |
|      |               |               |                                       |                             |                            |                          |              |              |               |                           |                |               |               |               |      |                              |                           |
|      |               |               |                                       |                             |                            |                          |              |              |               |                           |                |               |               |               |      |                              | -                         |
|      |               |               |                                       |                             |                            |                          |              |              |               |                           |                |               |               |               |      |                              |                           |
| Į    |               |               |                                       |                             |                            |                          | 1            |              |               |                           |                |               | <u> </u>      |               |      |                              |                           |
| 1111 |               | _             |                                       |                             |                            |                          |              |              |               |                           |                |               |               |               |      |                              |                           |

#### RED GENERAL DEL LLANO DE PALMA

#### ANALISIS QUIMICOS

|   |            |               | FECHA         | TOMA DE I                               | WESTRA:                    | MAYO 19      | 80           |                          |              |                | FECHA REA     | ALIZACION    | ANALISIS     | :      |      |                                |                           |
|---|------------|---------------|---------------|-----------------------------------------|----------------------------|--------------|--------------|--------------------------|--------------|----------------|---------------|--------------|--------------|--------|------|--------------------------------|---------------------------|
| : | Nº CONTROL | Cl =<br>mg/l. | SO,#<br>mg/l. | CO <sub>3</sub> H <sup>2</sup><br>mg/l. | co <sub>3</sub> "<br>mg/l. | NO3<br>mg/l. | NO2<br>mg/l. | PQ <sup>±</sup><br>mg/l. | Na*<br>mg/l. | Mg**<br>mg/l.  | Ca**<br>mg/l. | K *<br>mg/l. | OUREZA<br>°F | D.Q.O. | рH   | conductimidad<br>_st m hos/cm. | DETERGENTES<br>no iónicos |
| • | 31         | 426           | 73,46         | 339,40                                  |                            | 143          |              |                          | 76           | 60,78          | 156           | 4,32         | 64           | 1,74   | 8,01 | 1.589                          |                           |
|   | 32         | 2.449         | 160,20        | 280,60                                  |                            | 146          |              |                          | 1728         | 219,42         | 239           | 37,20        | 150          | 1,62   | 8,10 | 8.561                          |                           |
|   | 33         | 3.656         | 219,51        | 378,20                                  |                            | 100          |              |                          | 1680         | 181,73         | 469           | 13,50        | 192          | 1,68   | 7,94 | 9.150                          |                           |
|   | 34         | 426           | 1             | 353,80                                  |                            | 26           |              |                          | 78           | 74,15          | 182           | 2,93         | 76           | 1,34   | 7,98 | 1.637                          |                           |
|   | 35         | 177           | 69,46         | 338,20                                  |                            | 63,20        |              |                          | 48,30        | 46 <b>,</b> 19 | 132           | 6,35         | 52           | 1,18   | 8,02 | 1.078                          |                           |
|   | 36         | 164           | 27,09         | 378,20                                  |                            | 9,53         |              |                          | 42           | 46,68          | 95,20         | 2,18         | 34           | 1,34   | 7,81 | 739                            |                           |
| 1 |            |               |               |                                         | • 1                        |              |              |                          |              | •              |               |              |              |        |      |                                |                           |
|   |            | <b>L</b>      | <u> </u>      | i                                       | <u> </u>                   | <u> </u>     | L            |                          |              | <u> </u>       | L             |              | 1            |        | 1    | 1                              | 1                         |

#### RED LLANO LA .PUEBLA-INCA

#### ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: JUNIO 1980

FECHA REALIZACION ANALISIS: 30/6/80

| , |    |               |                          | 10MA UE 1      |                            | 001120       |                 |                |                 |                | PECHA REA |            |               |        |                 |                              |                           |
|---|----|---------------|--------------------------|----------------|----------------------------|--------------|-----------------|----------------|-----------------|----------------|-----------|------------|---------------|--------|-----------------|------------------------------|---------------------------|
|   | Nº | Cl =<br>mg/l. | SQ <sup>2</sup><br>mg/l. | ∞3 H²<br>mg/l. | co <sub>3</sub> "<br>mg/l. | NO3<br>mg/l. | NO <sub>2</sub> | PQE<br>- mg/l. | Na****<br>mg/l. | Mg**<br>rmg/l; | Ca**      | K*<br>mg/L | DUREZA<br>° F | D.Q.O. | pH <sub>.</sub> | CONDUCTIMDAD<br>jk m hos/cm. | DETERGENTES<br>no iónicos |
|   | 1  | 255           | 71,80                    | 634,40         |                            | 48,6         |                 | 5,1            | 94              | 51,06          | 116       | 40,3       | 50            | 6,4    | 8,07            | 1 6 48                       |                           |
| . | 2  | 128           | 28,45                    | 378,20         |                            | 64,5         |                 | _              | 51              | 54,46          | 94,4      | 3,89       | 46            | 1,41   | 8,17            | 1.043                        |                           |
|   | 3  | 142           | 34,05                    | 366            | -                          | 13,90        |                 | _              | 30              | 61,15          | 83,40     | 3,49       | 46            | 1,29   | 7 <b>,</b> 89   | 897                          |                           |
|   | 4  | 320           | 47,22                    | 353,80         |                            | 41,90        |                 | -              | 71              | 52,88          | 121       | 3,51       | 52            | 1,34   | 8,10            | 1.347                        |                           |
|   | 5  | 177           | 41,07                    | 378,20         |                            | 235          |                 | -              | 53              | 81,08          | 90,60     | 68,80      | 56            | 1,41   | 8,20            | 1.516                        |                           |
|   | 6  | 156           | <b>4</b> 2 <b>,</b> 54   | 280,60         |                            | 164          |                 | -              | 46              | 55,92          | 124       | 10,20      | 54            | 1,40   | 8,02            | 1.215                        |                           |
|   | 7  | 199           | 33,75                    | 402,60         |                            | 93,90        |                 | -              | 51              | 38,90          | 152       | 4,58       | 54            | 1,40   | 7,89            | 1.150                        |                           |
|   | 8  | 128           | 24,55                    | 329,40         |                            | 112          |                 | _              | 48              | 27,96          | 114       | 9,65       | 40            | 1,37   | 7,68            | 860                          |                           |
|   |    |               |                          |                |                            |              |                 |                |                 | ,              |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                | i l       |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               |        |                 |                              |                           |
|   | İ  |               |                          |                |                            |              |                 |                |                 |                |           |            | İ             |        |                 |                              |                           |
|   |    |               |                          |                |                            |              |                 |                |                 |                |           |            |               | I      |                 |                              |                           |
| L |    | i             |                          |                |                            |              | 1               |                |                 |                |           |            |               |        |                 |                              |                           |

TIII

#### RED LLANO LA PUEBLA-INCA

#### ANALISIS QUIMICOS

FECHA REALIZACION ANALISIS: 5/10/80

|          |               |         | FECHA                      | TOMA DE N           | UESTRA:                    | SEPTIEM      | BRE 198      | 30           |              |                          | FECHA REA | LIZACION    | ANALISIS      | : 5/10/ | 80   |                              |                               |
|----------|---------------|---------|----------------------------|---------------------|----------------------------|--------------|--------------|--------------|--------------|--------------------------|-----------|-------------|---------------|---------|------|------------------------------|-------------------------------|
| : [      | Nº<br>CONTROL | Cl      | SO <sub>g</sub> =<br>mg/l. | co <sub>3 H</sub> * | co <sub>3</sub> "<br>mg/l. | NO3<br>mg/l. | NO_<br>mg/l. | PQ≅<br>mg/l. | Na*<br>mg/l. | Mg <sup>™</sup><br>mg/l. |           | K*<br>mg/l. | DUREZA<br>* F | D.Q.O.  | pH   | CONDUCTIMOAD<br>/# m hos/cm. | DETERGENTES<br>no iónicos     |
|          | 1             | 319     | 88.50                      | 597,30              |                            | 68,2         |              | 24,65        | 96           | 53,20                    | 115,6     | 43          | 51            | 6,9     | 8,12 | 1.730                        |                               |
|          | 3             | 71      |                            | 385,40              |                            | 14,52        |              | 0,02         | 32           | 62,80                    | 87,60     | 3,52        | 48            | 1,61    | 1    | 1                            |                               |
|          | 5             | 213     |                            | 357,70              |                            | 114,4        |              | 0,34         | 55           | 78,40                    | 94,40     | 70,1        | 56            | 1,12    | i    | l .                          |                               |
|          | 6             | 177     |                            | 307,10              |                            | 57,2         |              | 0,08         | 42           | 49,83                    | 117,10    | 9,82        | 49            | 1,32    |      | l .                          |                               |
| ,        | 7             | 213     |                            | 398,20              | į                          | 70,4         |              | -            | 53           | ŧ                        | 149,30    | 1           | 52            | 1,75    | 1    |                              |                               |
|          | 8             | 142     | 30,79                      | 359,60              |                            | 42,68        |              | -            | 45           | 25,30                    | 117,32    | 9,10        | 39            | 1,44    | }    |                              |                               |
|          | 9             | 106     | 60                         | 310                 |                            | 47,08        |              | 0,06         | 74           | 64                       | 63        | 3           | 42            | 1,13    | 1    | 1.110                        |                               |
|          | 10            | 106     | 30                         | 380                 |                            | 17,6         |              | 0,07         | 44           | 47                       | 56        | 2           | 33            | 1,25    | i i  | 960                          |                               |
| 1.       | 11            | 390     | 130-                       | 320                 |                            | 38,72        |              | _            | 229          | 54                       | 74        | 11          | 41            | 1,47    | 1    | 2.100<br>850                 |                               |
| ,        | 12            | 106     | 35                         | 290                 |                            | 45,32        | 1            | 0,02         | 49           | 35                       | 110       | 3           | 42            | 1,32    | 1    | 1.220                        |                               |
| <b>.</b> | 13            | 142     | 52                         | 310                 |                            | 61,6         |              | -            | 51           | 52                       |           | 3,6         | 45            | 1,51    | 7,9  | 1.180                        |                               |
| 1.       | 14            | 85      | 49                         | 345                 |                            | 5,72         | 4            | 0,04         | 63           | 49                       | 112,8     | 4,8         | 48            | 1,49    | 1,,, | 1.100                        |                               |
| 11       |               |         |                            |                     |                            | 1            |              |              |              |                          |           |             |               |         |      |                              |                               |
|          |               |         |                            |                     |                            |              |              |              |              |                          |           |             | <u> </u>      |         |      |                              |                               |
|          |               |         |                            |                     |                            |              |              |              |              |                          |           |             |               |         |      |                              |                               |
|          |               |         |                            |                     |                            |              |              |              |              |                          |           |             |               |         |      |                              |                               |
|          |               |         |                            |                     |                            |              |              |              |              |                          |           |             |               |         |      |                              |                               |
|          |               |         |                            |                     |                            |              |              |              |              |                          |           |             |               |         |      |                              | . mandated (1976 - 1, 17 Man) |
|          | <u></u>       | <u></u> | <u> </u>                   | <u> </u>            | <u> </u>                   | <u> </u>     |              |              | <u>!</u>     | !                        | 1         | 1           | 1             | <u></u> |      |                              | -                             |

#### LA MARINETA

#### ANALISIS QUIMICOS

|   |            |               | FECHA                      | TOMA DE I     | duestra: M                 | ayo 198                  | 30           |              | FECHA REA    | ALIZACION     | ANALISIS      | : 2/6/       | 80           |          |     |                                |                           |
|---|------------|---------------|----------------------------|---------------|----------------------------|--------------------------|--------------|--------------|--------------|---------------|---------------|--------------|--------------|----------|-----|--------------------------------|---------------------------|
| : | Nº         | Cl T<br>mg/l. | SO <sub>z</sub> ²<br>mg/l. | ∞₃H*<br>mg/l. | co <sub>s</sub> "<br>mg/l. | NO <sub>3</sub><br>mg/l. | NO2<br>mg/l. | PQŽ<br>mg/l. | Na*<br>mg/l. | Mg**<br>mg/l. | Ca**<br>mg/l. | K *<br>mg/l. | DUREZA<br>°F | D. Q. O. | рΗ  | CONDUCTIVIDAD<br>_st m hos/cm. | DETERGENTES<br>no iónicos |
|   | 1          | 1.221         | 241                        | 355           |                            | 33                       |              |              | 650          | 91            | 182           | 34           | 82           | 4,5      | 7,1 | 4.570                          |                           |
|   | 1'         | 1.306         | 245                        | 360           |                            | 19                       |              |              | 648          | 80            | 214           | 30           | 86           | 4,5      | 7,1 | 4.320                          |                           |
|   | 3          | 894           | 125                        | 396           |                            | 11                       |              |              | 468          | 61            | 177           | 26           | 89           | 3,3      | 7,4 | 3.210                          |                           |
|   | 4          | 1.580         | 344                        | 153           |                            | 9                        |              |              | 798          | 120           | 224           | 32           | 108          | 6,2      | 7,4 | 5.470                          |                           |
|   | 6          | 113           | 23                         | 415           |                            | 5                        |              |              | 81           | 33            | 113           | 4            | 42           | 2,1      | 7,3 | 980                            |                           |
|   | 9          | 255           | 32                         | 123           |                            | 35                       |              |              | 85           | 26            | 121           | 4            | 40           | 2,9      | 7,6 | 1.070                          |                           |
|   | 10         | 248           | 109                        | 305           |                            | 19                       |              |              | 182          | 28            | 121           | 11           | 42           | 3,8      | 7,2 | 1.470                          |                           |
| ( | <b>1</b> 2 | 738           | 639                        | 335           |                            | 10                       |              |              | 141          | 186           | 304           | 89           | 153          | 6,7      | 7,2 | 9.880                          |                           |
|   | 12         | 7.1           | _20                        | 293           |                            | 33                       |              |              | - 42         | · · · 7       | 103           | 11           | 28           | 1,7      | 7,3 | 700                            |                           |
|   |            |               |                            |               |                            |                          |              |              |              |               | :             |              |              |          |     |                                |                           |

#### RED GENERAL DE FELANITX

#### ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: Julio 1980

FECHA REALIZACION ANALISIS: 30/7/80

|               |      | PECHA                                 | TOMA DE            | MUESTRA:          | Julio        | 1900            |              |              |               | FECHA RE      | ALIZACION   | ARALISIS      | . 30/ // |     |                              |                           |
|---------------|------|---------------------------------------|--------------------|-------------------|--------------|-----------------|--------------|--------------|---------------|---------------|-------------|---------------|----------|-----|------------------------------|---------------------------|
| Nº<br>CONTROL | Cl " | SO <sub>2</sub> <sup>2</sup><br>mg/l. | CO <sub>3</sub> H* | co <sub>3</sub> * | NO3<br>mg/l. | NO <sub>2</sub> | PQ≛<br>mg/l. | Na*<br>mg/l. | Mg**<br>mg/l. | Ca**<br>mg/l. | K*<br>mg/l. | DUREZA<br>• F | D.Q.O.   | рН  | CONDUCTMOAD<br>_/K m hos/cm. | DETERGENTES<br>no iónicos |
| 0             | 153  | 94                                    | <b>51</b> 3        |                   | 1            |                 |              | 117          | 45            | 110           | 46          | 48            | 4,8      | 7,9 | 1.380                        |                           |
| 1             | 92   | 33                                    | 329                |                   | 33           |                 |              | 55           | 45            | 59            | 6           | 32            | 1,4      | 7,7 | 780                          |                           |
| 4             | 408  | 98                                    | <b>36</b> 6        |                   | 43           |                 |              | 205          | 55            | 45            | 48          | 34            | 3        | 7,5 | 1                            |                           |
| 7             | 155  | 70                                    | <b>32</b> 9        |                   | 28           |                 |              | 71           | 43            | 71            | 6           | 35            | 1,5      | 7,7 |                              |                           |
| 21            | 603  | 494                                   | 579                |                   | 100          |                 |              | 422          | 119           | 165           | 35          | 91            | 2,9      | 7,8 |                              |                           |
| 22            | 85   | 29                                    | 390                |                   | 20           |                 |              | <b>4</b> 9   | 46            | 68            | 6           | 36            | 1,2      | 7,8 | 810                          |                           |
|               |      |                                       |                    |                   |              |                 |              |              | • .           |               |             |               |          |     |                              |                           |

#### RED GENERAL DE FELANITX

#### ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: 2/10/80

1...

FECHA REALIZACION ANALISIS: 5/11/80

| _ |     |       | PEUNA           | IUMA UE                                 | MUESIKA:                   | 2/10/8       | ···          |              |              |               | FECHA RE      | ALIZACION                                                                                                       | APPLICATION   | . ), . | ,,  |                               |                           |
|---|-----|-------|-----------------|-----------------------------------------|----------------------------|--------------|--------------|--------------|--------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------|-----|-------------------------------|---------------------------|
|   | Nº  | Cl T  | SQ <sup>#</sup> | CO <sub>3</sub> H <sup>®</sup><br>mg/l. | CO <sub>3</sub> "<br>mg/l. | NO3<br>mg/l. | NO2<br>mg/l. | PQ≛<br>mg/l. | Na*<br>mg/l. | Mg**<br>mg/l. | Ca**<br>mg/l. | K*<br>mg/l.                                                                                                     | DUREZA<br>* F | D.Q.O. | pH  | CONDUCTIMOAD<br>_st m hos/cm. | DETERGENTES<br>no iónicos |
|   | 0   | 175   | 95              | 515                                     |                            | 35           |              |              | 113          | 54            | 113           | 36                                                                                                              | 51            |        | 7,8 | 1.500                         |                           |
|   | 1   | 115   | 35              | 312                                     |                            | 32           |              |              | 54           | 49            | 50            | 5                                                                                                               | 33            |        | 7,7 | 1.100                         |                           |
|   | 3   | 177   | 49              | 335                                     |                            | 38           |              |              | 94           | 44            | 65            | 4                                                                                                               | 35            | ,      | 7,6 | 1.150                         |                           |
|   | 4   | 408   | 100             | 370                                     |                            | 43           |              |              | 176          | 54            | 68            | 40                                                                                                              | 40            |        | 7,1 | 1.900                         |                           |
|   | 7   | 170   | 70              | 330                                     |                            | 28           |              |              | 71           | 43            | 56            | 4                                                                                                               | 32            |        | 7,7 | 1.300                         |                           |
|   | 8   | 213   | 68              | 341                                     |                            | 35           |              |              | 97           | 38            | 55            | 7                                                                                                               | 30            |        | 7,4 | 1.500                         |                           |
| . | 9   | 213   | 55              | 328                                     |                            | 24,64        |              |              | 104          | 39            | 61            | 5                                                                                                               | 32            |        | 7,6 | 1.210                         |                           |
|   | 12  | 213   | 68              | 342                                     |                            | 38           |              |              | 111          | 34            | 61            | 5                                                                                                               | 34            |        | 7,5 | 1.200                         |                           |
|   | .18 | -21.3 | 49              | -335                                    | - ·                        | 41           |              |              | 92           | . 50          | 70            | 6                                                                                                               | 39            |        | 7,8 | 1.300                         |                           |
|   | 21  | 213   | 585             | 500                                     |                            | 100          |              |              | 371          | 123           | 185           | 23                                                                                                              | 102           |        | 7,9 | 3.900                         |                           |
|   |     |       |                 | l                                       |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   | •   |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 | 1                                       |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     | ļ                             |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               |                                                                                                                 |               |        |     |                               |                           |
|   |     |       |                 |                                         |                            |              |              |              |              |               |               | e de companyone de la companyone de la companyone de la companyone de la companyone de la companyone de la comp |               |        |     |                               |                           |

RED GENERAL DE LLUCHMAYOR

ANALISIS QUIMICOS

FECHA TOMA DE MUESTRA: 30/9/80

1,111

FECHA REALIZACION ANALISIS: 10/11/80

| Nº CONTROL | Cl -<br>.mg/l | SO <sub>g</sub> ≅<br>⊶mg/l. ⊶ | CO <sub>3</sub> H <sup>±</sup><br>mg/l. | CO3*<br>mg/l. | NO <sub>3</sub> ************************************ | NO <sub>2</sub> | PQ≛<br>mg/l. | Na*<br>mg/l. | Mg <sup>**</sup><br>mg/l, | Ca**<br>mg/l. | K*<br>mg/l. | DUREZA<br>°F | D.Q.O. | . pH ~ | CONDUCTMDAD<br>/# m hos/cm. | DETERGENTES<br>no iónicos |
|------------|---------------|-------------------------------|-----------------------------------------|---------------|------------------------------------------------------|-----------------|--------------|--------------|---------------------------|---------------|-------------|--------------|--------|--------|-----------------------------|---------------------------|
| 1          | 190           | 24                            | 262                                     |               | 23                                                   |                 | _            | 77           | 26                        | 68            | 7           | 34           | 1,9    | 7,4    | 790                         |                           |
| 4          | 200           | 133                           | 366                                     |               | . 27                                                 |                 | 0,03         | 167          | 39                        | 126           | 6           | 48           | 3,0    | 7,4    | 1.540                       |                           |
| 6          | 852           | 116                           | 372                                     |               | 33                                                   |                 | 0,03         | 379          | 62                        | 154           | 21          | 63           | 3,3    | 7,1    | 3.100                       |                           |
| 7          | 1207          | 52                            | 276                                     |               | 66                                                   |                 | _            | 269          | 28                        | 118           | 10          | 41           | 2,8    | 7,3    | 4.200                       |                           |
| 26         | 2059          | 230                           | 329                                     |               | 40,48                                                |                 | _            | 692          | 74                        | 202           | 36          | 82           | 5,0    | 7,1    | 6.900                       |                           |
| 27         | 1863          | 311                           | 408                                     |               | 29,92                                                |                 | 0,02         | 1.063        | 134                       | 254           | 60          | 118          | 6,0    | 7,1    | 6.300                       |                           |
| 28         | 2342          | 263                           | 384                                     |               | 41,8                                                 |                 | 0,87         | 988          | 147                       | 444           | 42          | 174          | 6,0    | 7,0    | 7.700                       |                           |
| 93         | 4242          | 534                           | 403                                     |               | 27,72                                                |                 | 0,09         | 1.934        | 255                       | 430           | 110         | 213          | 6,4    | 7,0    | 13.900                      |                           |
|            |               |                               |                                         |               |                                                      |                 |              | <u>-</u> .   |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           | ;             |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             | l            |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      | -               |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |
|            |               |                               |                                         |               |                                                      |                 |              |              |                           |               |             |              |        |        |                             |                           |

#### SIERRA DE LEVANTE

#### ANALISIS QUIMICOS

|     |    |       | FECHA 1       | TOMA DE N                   | IUESTRA: 1    | 16/4/80      |              |              |              |                          | FECHA REA     | LIZACION   | ANALISIS      | : 21/4 | 4/80 |                              |                           |
|-----|----|-------|---------------|-----------------------------|---------------|--------------|--------------|--------------|--------------|--------------------------|---------------|------------|---------------|--------|------|------------------------------|---------------------------|
| :   | Nº | Cl T  | SO,=<br>mg/l. | co <sub>3</sub> H²<br>mg/i. | CO3"<br>mg/l. | NO3<br>mg/l. | NO2<br>mg/l. | PQZ<br>mg/l. | Na*<br>mg/l. | Mg <sup>←</sup><br>mg/l. | Ca**<br>mg/l. | K*<br>mg/L | DUREZA<br>• F | D.Q.O. | рН   | conductimoad<br>/s m hos/cm. | DETERGENTES<br>no iónicos |
| i'  | 1  | 340   | 293,3         | 488                         |               | 16,9         |              |              | 147          | 109,4                    | 144,2         | 3,4        | 81            |        | 7,4  | 1.791                        |                           |
|     |    | l l   | 387,7         | 451                         |               | 23,1         |              |              | 194          | 89,9                     | 200,4         | 4,3        | 87            |        | 7,5  | 2.406                        |                           |
|     | 2  | 425   |               | 500,3                       |               | 24,7         |              |              | 51           | 72 <b>,</b> 9            |               | 1,8        | 50            |        | 7,5  | 1.007                        |                           |
|     | 3  | 99,2  |               |                             |               | 18,5         |              |              | 51           | 72,9                     | -             | 1,8        | 50            |        | 7,5  | 977                          |                           |
|     | 4  | 92,1  | 1             | 500,3                       |               | 24,7         |              |              | 367          | 1                        | 112,2         | i          | 67            |        | 7,7  | 2.931                        |                           |
|     | 5  |       | 229,6         | 329,4                       | 1             | 15,3         |              |              | 314          | 68                       | 128,2         | 11,1       | 60            |        | 7,8  | 2.406                        |                           |
|     | 6  | ł     | 217,1         | 378,2                       | 1             | 1            | t            | i<br>C       | 213          | 82,6                     | l             | 6,2        | 57            |        | 7,7  | 1.919                        |                           |
| I., | 7  | 432,5 | 167,7         | 378,2                       |               | 12,2         |              |              | 77           | 31                       | 61            | 4          | 28            | 1,7    | 7,7  | 770                          |                           |
| 4.  | 8  | 103   | 24            | 323                         |               | 22           |              |              | 1            | 32                       | 77            | -5         | 34            | 1,4    | 7,7  | 1                            |                           |
|     | 9  | 103   | 66            | 299                         |               | 32           |              |              | 73           | 1                        | 129           | 19         | 60            | 2,6    | 7,9  | 1                            |                           |
|     | 10 | 738   | 204           | <b>40</b> 3                 |               | 7            | İ            |              | 448          | 67                       | 65            | 7          | 39            | 1,4    |      | 1                            |                           |
|     | 11 | 163   | 70            | 342                         |               | 14           |              |              | 342          | 56                       | 1             | 6          | 70            | 1,9    | 1    | 1.750                        |                           |
|     | 12 | 185   | 178           | 311                         |               | 249          |              |              | 98           | 89                       | 132           | 1          | 48            | 1,8    | 1    | 1.560                        |                           |
| 11  | 13 | 337   | 87            | 317                         |               | 37           |              |              | 171          | 51                       | 105           | 13         | 40            | ',"    | ′′   |                              |                           |
|     |    |       |               |                             |               |              |              |              |              |                          |               |            |               |        |      |                              |                           |
|     |    |       |               |                             |               |              |              |              |              |                          |               |            |               |        |      |                              |                           |
|     |    |       |               |                             |               |              |              |              |              |                          |               |            |               |        |      |                              |                           |
| ĺ   |    |       |               |                             |               |              |              |              |              |                          |               |            |               |        |      |                              |                           |
|     |    |       |               |                             |               |              |              |              |              | İ                        |               |            |               |        |      |                              |                           |
|     |    |       |               |                             |               |              | <u></u>      | <u></u>      |              |                          | <u></u>       |            |               |        |      | 1                            |                           |

#### ANEXO VI

Análisis completos zona de Son R**e**us.

### Gabinete técnico del agua

ANTONIO RODRIGUEZ MAZARRO

Juimico

**25 23 58** 

## Palma de Mallorca 31 - V - 1979

analisis de une muestre de aque remitode por EMAYA con los datos signientes: SHB-24 a nombre de Trabel Jame Con pany con doministro en C'an Nofre de Polme.

| Unalisis Junieo may llito m           | ieg/1 |
|---------------------------------------|-------|
| Clours caperados en ion Cl 78,0,88 2. | 22    |
| Son= 28, 4 0'5                        |       |
| Bir loret " " CO3H- 262,3             |       |
| 788                                   | 13    |
| Wilsons "                             | 4     |
| Calcio "                              | 4     |
| Magnesio "                            |       |

Omera total en ° h F ... 36

Solidos disueltos a 115°C - 2082 mg/l.

Parametro de seguinto como Cr. 01031 mg/l.

11. A

# propordidad nivel de agua 10,10 m. (19.1.78) distancia al r.R. S. 4. 1800 m.

## Ayuntamiento de Palma

N.º 79/502

#### LABORATORIO QUIMICO-BACTERIOLOGICO

| Examen de Agua                                  |
|-------------------------------------------------|
| remitido por D. EMAYA - J. Company . Ca'n Nofre |
| <del></del>                                     |
|                                                 |
| Lateria Orgánica (en m. acido) 0,64mg/1         |
| Nitriros: reacción directa 0                    |
| Nitratos                                        |
| Amoníaco: reacción directa 0                    |
| Cloruros                                        |
| Cloro residual 0 mg/l                           |
| Dureza total //grados franceses38               |
| рн 7                                            |
| Condudtividad a.20.C865                         |
| Germenes de Contaminación (N.H.P.) 0            |
|                                                 |
| POTABLE.                                        |
| <u> </u>                                        |
| Palma 37 de 1870 à de 1979                      |

14 05 03 5E

# Palma de Mallorca 32-V-197-9

Angliais de ma mentre de aque remitede ja EMDY4
les dates aignientes: SHB-2497 a mentre de Bernarde Be
Montes con domicio en Infanta Pajano nº 19-1º, 19 de Palma

| analisis (   | Juim | `ω '. |     |               | mg/l            | m.e.g./ |
|--------------|------|-------|-----|---------------|-----------------|---------|
| clones eaf   |      |       |     | el-           | 60,35           | 1,1     |
| Sulfator "   | 1    | 11    | , , | 504=          | 125             | 5, 4    |
| Bicarbonatos |      |       | 11  | c 03 H-       | 3 2 9<br>8, 2 4 | 0'13    |
| Witneto-     |      |       | 11  | NO3           |                 | 2 ' ጉ   |
|              |      | ε,    | "   | Catt          | 5 4             | 0,9     |
| Calcio       |      | ц     | /1  | $M_{\xi}^{+}$ | 1018            |         |
| Magnesio '   | •    |       |     | 9             |                 |         |

PA

profundidad novel de ogua 32m. (Legun informer del usuara)

distancia al V.A. 5.4. 2500 m.

## Ayuntamiento de Palma

#### N.º\_79/517\_

#### LABORATORIO QUIMICO-BACTERIOLOGICO

| emitido por D. <u>maria — D</u> | ernardo Bergas L'estre<br>   |
|---------------------------------|------------------------------|
| Lateria Organica (Va            | l. en m. acido) 0,74         |
| Nitritos: reacción d            | irecta0                      |
| Nitratos                        | ll ng/l                      |
|                                 | irecta0                      |
| Cloruros                        | 132 mg/l ClN                 |
| Cloro residual                  | 0 mg/l                       |
|                                 | franceses)32                 |
| pH                              | 7                            |
| Conductividad a 20              | C 783                        |
|                                 | ón 5,1                       |
| Sanitariamente Toler            | able, se aconseja cloración. |

**25 23 58** 

# Pulma de Mallorca 31 - V - 1979

Arrabisis de une metre de apria remitida por EAAYA con los datos experientes S.H.B. -2204 domiciliado en Cas Techerdos Nov de la localidad de Palma

| analisis quinico: |         |      |    | mf/l         |         | m.e.9/1. |  |
|-------------------|---------|------|----|--------------|---------|----------|--|
|                   |         |      |    | ee-          | 127,8   | 3, F     |  |
| Clorurs eaps      | expusao |      |    |              | u 8.    | 1.       |  |
| Lulfatos          | 15      | · ·  | 1. | So,=         |         | 5,6      |  |
| Birarleo          | nation! | • 11 | 11 | CO3H-        | 344,6   |          |  |
| Nitrato           | •       | ٠,   | l) | $N_{03}^{-}$ | 9,01    | 0'14     |  |
| 10212             | •       |      | 14 | Ca + 1       | 120     | £        |  |
| Calaio            | •       |      |    | Mg           | -3 3, 6 | 2,8      |  |
| Magnes            | 4.      | l,   | /t | Q            | · .     |          |  |

profundided pave de usuo no)

distinuid al V.R.S. 4. 1700 m.

## Ayuntamiento de Palma

N.º 79/503

#### LABORATORIO QUIMICO-BACTERIOLOGICO

| Examen de Agua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| remitido por D. <u>ELAYA - Ca's Teixeidos Nou</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Esteria Orgánica (Val. en m. acido)6,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nitritos: reacción directa0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nitratos28 mæ/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Amonfaco: reacción direct 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cloruros141 mg/1 ClN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cloro residual 0 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dureza total (grados franceses)39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| рн 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conductividad a 20°C868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Germenes Contaminación (N.M.P.) 9,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Senit ri mente tolerable, se aconseja cloración.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Palma, 31 de 1240 de 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |