Karst-fractured reservoirs : diagenesis & petrophysical features.

Analogous reservoir: Santayi aquifer (Mallorca, Spain)

Supervisor: Jean Louis Cappelli

- P.O.M, 27/08/09, CSTJF

Outline

Results of previous studies in Font Sant region

Objectives

- > Workflow
- Location of Font Sant aquifer
- Geological settings
- Well localization: S23/S26/S27
- Facies description of core
- Origin of Unit 2 and unit 3
- Karst-fractured reservoir: Santayi aquifer
 - Configuration of the aquifer
 - ✓ Karst features
- Virtual petrophysical analysis
- Conclusion

Results of previous studies in Font Sant region

- Geo/hydrothermal activity recorded
- Presence of particular zone in depth, characterized in term of:
 ✓ Geophysics by a high radioactivity
 - ✓ Lithofacies by coarse crystals of calcite

Conclusion

The anomaly corresponds probably to: a filled-paleokarst created by a radioactive zone

geo/hydrothermal fluids flow throughout an eventual fault

Provide criteria showing :

Existence of a fault associated to geo/hydrothermal fluid circulation

✓ If there are no criteria of fault and hydrothermalism :

Define the nature of this large filled paleokarst: meteoric or mixing zone

Main objectives:

✓ Define the nature of distinct karst development : meteoric or burial !?

✓ Analyze and characterize the impacts of diagenesis processes related to karst impact on petrophysical parameters of the aquifer.

✓ Role of fractures on the quality of the Font Sant aquifer

Mallorca fieldwork : Logging + Inter-well triangulation

✓ Core analysis :

- Fitting to gather and orientation of the core fragment
- Scanning: acquisition, virtual petrophysical treatment from Amira software
- Thin section and plug sampling.

Macro-Sedimentological/Structural description of cores

- Directly from cores
- from X-Ray images
- Mirco- facies description from thin sections
- ✓ Borehole data analyses
- ✓ Diagenesis analyses from :
 - Thin sections
 - Cathodoluminescence miscroscopy
 - Stable oxygen and carbon isotopes

Inter-well correlation

Location of Font Sant aquifer

✓ Island of Mallorca extends into

the western Mediterranean Sea

✓ Font Sant located:

In South eastern part of Mallorca

On Santayi platform

in length

TOTAL

8 - P.O.M, 27/08/09, CSTJF

#1			Toxture	Grain Size	Fractures/Fault		Macro Porosity	Paratymos	Karet	Karet tuno		Bioclaste	Type	s of bioclast	1
Depth			Texture								ilt karts			, or proceeds	_
1m:100m	Lithology	Microfacies	StateAtt Attention Marcharca Marcharca Marcharca Marcharca Marcharca Marcharca Marcharca Packstone Containione	Very flue Fine Medium Coarse	1 0	Sedimentary structures	poet fair good very good	Meregan Merein Nager Vager Vager Mercysta Mercysta Mercysta Sissua	Low Medium High	Meteoric Hydrothermalism	filled Cement karts filled	Rare Common Abundant	Red algae Molfusk	For annualer s Lamellite anche	Echinoids
- 0.0								III					1.4		1 E
2.0					×1 ×1 ×1	* *		I							
4.0						à									
- 6.0					21 21 21 * 23 23 23			ſ[,							
- 10.0					ma	ı ₹		ILL							
-					* <i>MU</i> *								k		E
- 12.0					ma			III							I
- 14.0					* ~ ma										
- 16.0					39F										۱Ē.
- 18.0					1129			[I							
- 20.0				5 	נדרו הדרו			I I I							
- 22.0						V									
- 24.0															
26.0															Ē
- 28.0								[- I x							
30.0								[*] I [I *							
32.0															
- - 34.0						₹									Ē

Unit1: Skeletal Packstone/Graisntone

Rich in foraminifers

Karstified

And

Fractured

9 - P.O.M, 27/08/09, CSTJF

Brèche polygénique

Skeletal Padistone

Unit/ 0.00 to 16.50 m

Grainstone rich in foram

Bivalves are common

Porosity: Intergranular, Moldic, vugs

Packstone rich in bivalves

Predominant porosity: Leached porosity

Due to karst action

Facies description of core: Case of Well S26

Three lithofacies units are distinguished:

Unit1: Skeletal Packstone/Graisntone

Rich in foraminifers

Karstified

And

Fractured

Unit2: Crystalline rock

Deformated

Exploration & Production

Unit2: 16.5 to 21 meters

Facies description of core: Case of Well S26

Three lithofacies units are distinguished:

Unit1: Skeletal Packstone/Graisntone

Rich in foraminifers

Karstified

And

Fractured

Unit2: Crystalline rock

Deformated

Unit3:

Polygenic breccias

13.30 meters thick

Exploration & Production

Unit3: 21 to 34.30 met

Dolomitized layers on breccias

Type of dolomitization

Porosity is good: Intracrystal + intercrystalline • Note: Calcite stained in red / Dolomite unstained

• Note the clear rims and cloudy core of dolomite crystals

• Note the polymodal variability of the dolomite crystal size

Replacement dolomitization

TOTAL

Origin of Unit 1 and Unit2

Geological map

SERIES	STAGES	CICLES (3RD ORDER)	PLANKTONIC FORAMS BIOCHRONOZONES	Stratigraphic units MALLORCA				
PLEIST-		3.10	N23	2				
OCENE		3.9	N22					
1.111		3.8	N21	Palma Silts				
<u>o</u> z	25	3.7	N20					
18	0.5	35	N10	Dant Jardi Calescenites				
	5.2	3.4	N18	Son Mir Calcisitites				
<u>ب</u> ۳	MESSINIAN 6.3	3.3	N17	Santanyi Liniestones Gypsum & Bonanova Maris Grey Maris				
CEN		3.2		Reef Complex Unit				
MIO	TURTUNIAN	3.1	NID	Heterostegina Calcisiltites Unit				

• Unit 1: Bioclastic limestone = Messinian Santayi Limestone

- Unit3: Polygenic breccias = Pleistocene alluvial fan deposits
 - = Palma silstone which overlay Santayi limestone
- Unit2: No deposits in Mallorca can be assimilated to

the coarse crystal of calcite of Unit2

Anigin tofelsisit11 Medelonit2 filled-paleokarst

Depusit ul transgressive unit. Jantayi Limestune = Unit I

Hypothesis 2: Hydrothermal karst

Geological and structural map

Residual void filled by coarse crystal of calcite

Organic matter

effect of Meteoric alteration

Reprecipitations of

coarse crystal of calcite In large residual void

Font Sant filled-Paleokarst

affected by Paleokarst filled by

Santayi limestone (Unit1)

Coarse crystal of calcite (Unit2)

And

Breccias (Unit3)

Karst-fractured reservoir: Santayi aquifer

Configuration of the aquifer

Ph and Conductivity are only evaluated in the aquifer Zone where Ph and Cd are not available Vadose zone Water table at : 5.40 m (WellS26) 6.10 m (Well S27) **Phreatic environment**

Karst features

****/#hti cestetize)// a terrotarbler)t

Extensive semen inten to Leached porosit Mixing of chemically di tinct water Due to Meteoric karst ction

Fluctuation of the water table

Dissolution structures

in Phreatic area

Regreciaitationprocesses

neteoric fluid

or by red clay (Paleosoil materials)

✤ Meteoric Diagenesis

Karst cavity partly occluded by gravitational cement

Extensive cementation in phreatic zone

Note the nonluminescence of cement

That response is typically assigned to

oxidizing environment,

as meteoric environment

In which reduced forms of both

Mn and Fe are unavailable

Virtual petrophysical analysis

2.0

4.0

6.0

8.0

14.0

Visualisation of the Porous network

Dis**s/elution/styrotsres**ean

sometimessigeffergeborerönheitivity

Permeability reductions through

Potential of connectivity of these cementation of interconnected primary pores structures

depends on

Detyce of alteration crietherseterologin

solution enlargement of fractures

In addition note the control of karst development by fracture types of dissolution pores

Conclusion

Anomaly in Font Sant corresponds

to a Filled Paleokarst (Unit 2 and 3), Early Pliocene in age

Karst-fractured reservoir as

heterogeneous reservoir

In term of

Porosity and Permeability

Origin of this paleokarst is Meteoric

Infilling is **Pleistocene** in age

Heterogeneity mainly controlled by

diagenesis process

related to karst action

Predominant porosity in karst reservoir is

Dissolution porosity (Moldic, Channel, vugs, caverns)

Fractures can highly ameliorate

the quality of karst reservoirs

Increase of permeability

And Porosity (karst development from fractures)

Evidently, This investigation is realized on

the service of the se

So, it will be interesting, in FonFSaababaifeg and characterizing

the nature of karst development (hydrothermal, salt water) ✓ To realize a detailed structural map

Realized measures of temperature And

chemic analysesheir impact on quality of the reservoir

To confirm or invalidate the hydrothermal hypothesis

Thank you for your attention

